Впускной контур для одновального устройства

Изобретение относится к паровой турбине с впускным кольцевым каналом, который гидравлически соединен с впускным штуцером, причем осуществленный таким образом, что входящий поток сначала замедляется, а затем ускоряется и одновременно изменяет направление. Технический результат: оптимизация соотношения входящих потоков. 2 н. и 4 з.п. ф-лы, 7 ил.

 

Изобретение относится к турбомашине, включающей в себя установленный с возможностью вращения вокруг оси вращения ротор, расположенный вокруг ротора корпус и образованный между ротором и корпусом проточный канал, далее

включающей в себя впускную зону, которая имеет впускной штуцер и входит во впускной кольцевой канал, причем впускной кольцевой канал имеет, в основном, поперечное сечение кольцевого канала и гидравлически соединен с проточным каналом, причем впускной кольцевой канал осуществлен вокруг оси вращения, причем впускной штуцер имеет впускное поперечное сечение, через которое в процессе работы текучая среда проходит в направлении потока.

Далее изобретение относится к способу пристыковки впускного штуцера к впускному кольцевому каналу.

Паровые турбины включают в себя, в основном, установленный с возможностью вращения вокруг оси вращения ротор, который имеет рабочие лопатки, а также осуществленный с направляющими лопатками корпус, причем между ротором и корпусом образован проточный канал, который включает в себя направляющие и рабочие лопатки. Тепловая энергия пара преобразуется в механическую энергию ротора. Известны различные частичные турбины, которые подразделяются, к примеру, на турбины высокого давления, среднего давления и/или низкого давления. Разделение частичных турбин на турбины высокого давления, среднего давления и низкого давления в широких кругах специалистов не определяется однозначно. Разделение, в любом случае, в обязательном порядке зависит от давления и температуры входящего и выходящего пара.

Также известны варианты осуществления, при которых часть высокого давления и часть среднего давления расположены в совместном внешнем корпусе. Такие варианты осуществления требуют наличия двух впускных зон, которые расположены близко рядом друг с другом. При этом, с точки зрения динамики вращения, необходимо, чтобы входящий поток высокого давления и входящий поток среднего давления располагались близко друг к другу, так как аксиальное пространство ограничено. Далее с экономической точки зрения более благоприятным является, когда впускная зона высокого давления и впускная зона среднего давления расположены близко друг к другу.

Далее известно о возможности подачи пара посредством клапанов к проточному каналу. При этом пар проходит через быстродействующий клапан-отсекатель и через регулировочный клапан, и затем во впускную зону, а оттуда в кольцевой канал. Кольцевой канал осуществлен, в основном, вращательно-симметричным вокруг оси вращения. Скорости пара в кольцевом канале должны быть, по возможности, равномерными и небольшими. У двухклапанных устройств, то есть, когда пар проходит через два клапана и, таким образом, через две впускные зоны во впускной канал, соотношения потоков в кольцевом канале отличаются от одноклапанных устройств. У одноклапанных устройств пар проходит лишь через одну впускную зону в кольцевой канал. В одноклапанных устройствах поперечное сечение кольцевого канала, как правило, больше, чем поперечное сечение кольцевого канала у двухклапанного устройства. Это осуществляется, в основном, для того, чтобы удерживать скорости потоков на низком уровне.

Возможно было бы увеличить кольцевой канал в радиальном направлении, что, однако, повысит обусловленные внутренним давлением напряжения во внутреннем корпусе. С другой стороны, увеличение толщины стенки привело бы к уменьшению напряжения, что опять же привело бы к повышению обусловленных температурой напряжений. Обе эти концепции осуществления следует оптимизировать.

Задача настоящего изобретения состоит в создании впускной зоны, которая приведет к улучшению соотношений потоков.

Эта задача решается посредством паровой турбины, включающей в себя установленный с возможностью вращения вокруг оси вращения ротор, расположенный вокруг ротора корпус и образованный между ротором и корпусом проточный канал, далее включающей в себя впускную зону, которая имеет впускной штуцер и входит во впускной кольцевой канал, причем впускной кольцевой канал имеет, в основном, поперечное сечение кольцевого канала и гидравлически соединен с проточным каналом, а впускной кольцевой канал осуществлен вокруг оси вращения, а впускной штуцер имеет впускное поперечное сечение, через которое в процессе работы текучая среда проходит в направлении потока, причем поперечное сечение в направлении потока увеличивается до максимального поперечного сечения и затем уменьшается до поперечного сечения кольцевого канала.

Таким образом, технический результат изобретения заключается в изменении скоростей потоков во впускной зоне, что осуществляется посредством изменения геометрии впускной зоны. В основном, при этом модифицируется стыковка поперечного сечения между впускным штуцером и кольцевым каналом, причем поперечное сечение увеличивается по поперечному сечению кольцевого канала и после замедления потока достигается повторное ускорение, однако, в другом направлении.

В зависимых пунктах формулы изобретения представлены предпочтительные варианты усовершенствования. Так в предпочтительном варианте усовершенствования изобретения соотношение между максимальным поперечным сечением А2 и впускным поперечным сечением А1 таково:

1,1 < А2/А1 < 1,7.

Посредством попыток оптимизации и моделей потока могло быть определено, что указанное соотношение способствует оптимальному потоку.

Далее в предпочтительном варианте усовершенствования представлены следующие соотношения:

0,7 < А3/А1 < 1,0,

причем А3 представляет собой поперечное сечение кольцевого канала.

И в данном случае посредством модели и расчетов был определен оптимальный входящий поток с вышеупомянутыми значениями.

Описанные выше свойства, признаки и преимущества данного изобретения, а также тип и способ их достижения представляются более ясно и понятно в связи со следующим описанием примеров осуществления изобретения, которые более детально поясняются на основании чертежей.

Примеры осуществления изобретения описываются далее на основании чертежей. Они не должны представлять примеры осуществления изобретения в масштабе, более того, чертежи, которые служат для пояснений, представлены в схематичной и/или в слегка измененной форме. Что касается дополнений непосредственно представленных на чертежах идей, то ссылаются на соответствующий уровень техники.

На чертежах представлены:

фиг.1 - схематичное изображение поперечного сечения впускной зоны,

фиг.2 - разрез В-В с фиг.1,

фиг.3 - разрез А-А с фиг.1,

фиг.4 - разрез А-А с фиг.1 в альтернативном варианте осуществления,

фиг.5 - разрез А-А с фиг.1 в альтернативном варианте осуществления,

фиг.6 - схематичное изображение соотношений потока в соответствии с уровнем техники,

фиг.7 - схематичное изображение соотношений потока в соответствии с изобретением.

Фиг.1 демонстрирует поперечное сечение впускной зоны 1 паровой турбины. Паровая турбина на фиг.1 не представлена более детально. В основном, паровая турбина включает в себя установленный с возможностью вращения ротор, который установлен с возможностью вращения вокруг оси 2 вращения. Вокруг ротора расположен корпус, к примеру внутренний корпус.

Вокруг внутреннего корпуса может быть расположен другой корпус, к примеру внешний корпус. Между ротором и корпусом образован проточный канал (не изображен). Ротор имеет на своей поверхности несколько рабочих лопаток. Внутренний корпус имеет на своей внутренней поверхности несколько направляющих лопаток. Проточный канал образуется, тем самым, посредством направляющих и рабочих лопаток, причем в процессе работы тепловая энергия пара преобразуется в энергию вращения ротора. Фиг.1 демонстрирует впускную зону паровой турбины, причем проточный канал ориентирован в направлении оси вращения. Впускная зона 1 включает в себя впускной канал 3. Он осуществлен, в основном, вращательно-симметричным относительно оси 2 вращения и имеет внешнее ограничение 4. Это внешнее ограничение 4, по меньшей мере, начиная от положения 5 «6 часов» до положения 7 «3 часа», осуществлено вращательно-симметричным. Это означает, что радиус 8 корпуса, начиная от положения 5 «6 часов» до положения 7 «3 часа», осуществлен постоянным.

Впускная зона имеет далее впускной штуцер 9. Впускной штуцер 9 является, в основном, трубообразным соединением, которое соединяет не изображенный трубопровод для пара с впускным кольцевым каналом 3. Впускной штуцер 9 имеет индивидуальную геометрическую форму. Эта форма будет описана далее более детально. Начальный контур 10 образует место присоединения к трубообразному трубопроводу для пара (не изображен). Поперечное сечение начального контура 10 может иметь, таким образом, круглую форму. Однако возможны и другие геометрические трубообразные контуры. Этот начальный контур 10 включает в себя нижнее ограничение 11 штуцера, которое осуществлено таким образом, что примыкает в положении 5 «6 часов». Это означает, что нижнее ограничение 11 штуцера ориентировано к внешнему ограничению 4 тангенциально относительно оси 2 вращения. При этом нижнее ограничение 11 штуцера вполне может быть расположено таким образом, что вблизи начального контура 10 оно в положении 5 «6 часов» расположено под внешним ограничением 4. Нижнее ограничение 11 штуцера на начальном контуре 10 располагается, таким образом, на расстоянии 12 по высоте ниже, чем внешнее ограничение 4 в положении 5 «6 часов».

Впускной штуцер 9 включает в себя далее верхнее ограничение 13 штуцера. Верхнее ограничение 13 штуцера начинается от начального контура 10 и описывает полукруглую дугу вверх к положению 7 «3 часа». В положении 7 «3 часа» верхнее ограничение 13 штуцера тангенциально примыкает к внешнему ограничению 4. Впускной штуцер 9 входит, таким образом, во впускной кольцевой канал 3. Впускной кольцевой канал 3 имеет, в основном, поперечное сечение А3 кольцевого канала (не изображено более детально) и гидравлически соединен с проточным каналом (не изображен). Из соображений наглядности на фиг.1 поперечное сечение А3 кольцевого канала изображено в положении 14 «9 часов», в положении 15 «12 часов» и в положении 7 «3 часа».

Впускной штуцер 9 имеет у начального контура 10 впускное поперечное сечение А1. Впускное поперечное сечение А1 может быть круглым или же может иметь овальную форму. В процессе работы текучая среда, в частности пар, проходит через паровую турбину в направлении 16 потока во впускной канал 3. Поток пара в проточной канал является комплексным и далее будет пояснен на фиг.6 и на фиг.7. Для понимания представленного на фиг.1 контура, с целью наглядности, поток представлен посредством линии 17 потока. Линия 17 потока должна отображать, в основном, движение текучей среды во впускном кольцевом канале. Поток начинается, таким образом, на начальном контуре 10 и примерно в положение 18 «5 часов» отклоняется в первоначальном направлении. Вдоль линии 17 потока впускное поперечное сечение А1 имеет определенное значение и увеличивается до максимального поперечного сечения А2. Максимальное поперечное сечение обозначено на фиг.1 посредством линии, причем линия представляет собой также разрез А-А, который на фиг.3, 4 и 5 будет описан более детально. В соответствии с изобретением, таким образом, поперечное сечение в направлении 16 потока уменьшается до впускного поперечного сечения А1 и затем до поперечного сечения А3 кольцевого канала. Это приводит к тому, что поток замедляется и снова ускоряется, правда, в другом направлении. Иными словами, скорость потока при прохождении поперечного сечения для входа в кольцевой канал замедляется и затем снова ускоряется, причем компонент скорости в тангенциальном направлении преобразуется в компонент скорости в радиальном направлении. Этот радиальный компонент скорости потока перекрывает путь круговому тангенциальному потоку и, тем самым, выдавливает пар в аксиальном направлении в проточный канал. Благодаря этому минимизируются потери на входе.

При этом действительны следующие соотношения:

1,1 < А2/А1 < 1,7 и 0,7 < А3/А1 < 1,0.

Фиг.2 демонстрирует разрез вдоль линии II-II с фиг.1. При этом линия 19 отображает входное поперечное сечение А1, а линии 20, 21 и 22 - три различных варианта осуществления, которые могут быть описаны следующим образом. Линия 20 описывает контур, при котором соотношение А2/А1 = 1. Линия 21 описывает контур, при котором соотношение А2/А1 = 1,25. Линия 22 описывает контур, при котором соотношение А2/А1 = 1,55.

Фиг.3 демонстрирует разрез вдоль линии А-А с фиг.1. Фиг.4 и 5 демонстрируют другие поперечные сечения, вдоль линии А-А разреза с фиг.1 для различных соотношений. Так фиг.3 демонстрирует соотношение А2/А1 = 1, 55. Фиг.4 демонстрирует соотношение А2/А1 = 1,25, а фиг.5 демонстрирует соотношение А2/А1 = 1.

Фиг.6 демонстрирует схематичное изображение соотношений потока во впускной зоне 1 в случае потока с потерями. На фрагменте 23 демонстрируется изображение в перспективе впускного штуцера впускной зоны 1. Фиг.6 демонстрирует при этом вариант осуществления, при котором поперечное сечение не увеличивается в направлении потока. На фиг.6, кроме того, показано, что поток во впускной зоне имеет сильную окружную компоненту в критической зоне 24. Фиг.7 демонстрирует, напротив, вариант осуществления в соответствии с изобретением впускного штуцера 9. Следующий фрагмент 24 демонстрирует изображение в перспективе впускного штуцера 9 впускной зоны 1. Можно видеть, что на начальном контуре 10 поперечное сечение А1 в направлении потока увеличивается до максимального поперечного сечения А2 и затем уменьшается до постоянного поперечного сечения А3 кольцевого канала. Представленный на фиг.1 вариант осуществления демонстрирует одноклапанное устройство. Из соображений наглядности был продемонстрирован контур возможной второй направляющей 25 клапана.

Несмотря на то что изобретение было детально подробно проиллюстрировано и описано на основании предпочтительного примера осуществления, изобретение не ограничивается представленными примерами и на их основе специалистом могут быть сформулированы другие варианты осуществления в пределах объема правовой защиты.

1. Паровая турбина, включающая в себя

установленный с возможностью вращения вокруг оси (2) вращения ротор,

расположенный вокруг ротора корпус и образованный между ротором и корпусом проточный канал,

включающая в себя далее впускную зону (1), которая имеет впускной штуцер (9) и входит во впускной кольцевой канал (3),

причем впускной кольцевой канал (3) имеет, в основном, поперечное сечение (А3) кольцевого канала и гидравлически соединен с проточным каналом,

причем впускной кольцевой канал (3) осуществлен вокруг оси (2) вращения,

причем впускной штуцер (9) имеет впускное поперечное сечение (А1), через которое в процессе работы текучая среда проходит в направлении потока,

причем впускное поперечное сечение (А1) в направлении потока увеличивается до максимального поперечного сечения (А2) и затем уменьшается до поперечного сечения (А3) кольцевого канала.

2. Паровая турбина по п.1,

причем впускной кольцевой канал (3) осуществлен, в основном, вращательно-симметричным вокруг оси (2) вращения.

3. Паровая турбина по п.1 или 2,

причем направление (16) потока в зоне впускного штуцера (9) осуществлено, в основном, тангенциально относительно впускного кольцевого канала (3).

4. Паровая турбина по пп.1, 2 или 3,

причем действительно:

1,1 < А2/А1 < 1,7.

5. Паровая турбина по любому из предыдущих пунктов,

причем действительно:

0,7 < А3/А1 < 1,0.

6. Способ оптимизации соотношений потока во впускной зоне (1) паровой турбины,

причем паровая турбина, включающая в себя установленный с возможностью вращения вокруг оси (2) вращения ротор, расположенный вокруг ротора корпус и образованный между ротором и корпусом проточный канал,

далее включающая в себя впускную зону (1), которая имеет впускной штуцер (9) и входит во впускной кольцевой канал (3),

причем впускной кольцевой канал (3) имеет, в основном, поперечное сечение (А3) кольцевого канала и гидравлически соединен с проточным каналом,

причем впускной кольцевой канал (3) осуществлен вокруг оси (2) вращения,

причем впускной штуцер (9) имеет впускное поперечное сечение (А1), через которое в процессе работы текучая среда проходит в направлении потока,

причем впускное поперечное сечение (А1) в направлении потока увеличивается до максимального поперечного сечения (А2) и затем уменьшается до поперечного сечения (А3) кольцевого канала.



 

Похожие патенты:

Изобретение относится к области турбостроения, точнее к способам изготовления направляющих лопаток компрессора из композиционного материала для газотурбинного двигателя, преимущественно авиационного.

Направляющая лопатка турбины имеет полое перо лопатки, в котором расположен обходной канал для охлаждающего средства, имеющий разделенные стенками внутренние и наружные стороны.

Группа изобретений относится к машиностроению, в частности к турбостроению, и может быть использована в паротурбинных приводах, транспортных газотурбинных двигателях, а также в турбокомпрессорах двигателей внутреннего сгорания.

Соединительный опорный элемент 33, включающий две разделенные детали 34, 34, отделенные друг от друга, расположен в соединительном компоненте между хвостовой частью 21 лопатки, представляющей собой направляющую лопатку 20, и крепежным фланцем 31f, и две разделенные детали 34, 34 присоединены к хвостовой части 21 лопатки с обеих сторон в направлении толщины лопатки.

Способ изменения начального контура аэродинамического тракта (2 содержит этап, заключающийся в том, что прикрепляют деталь (1) изменения аэродинамического тракта (2) на аэродинамическом тракте (2).

Неподвижная лопаточная решетка газотурбинного двигателя содержит внутреннюю кольцевую площадку и множество установленных на ней неподвижных лопаток. Внутренняя площадка содержит опорную пластину, образующую основание лопаток, радиальную кольцевую перегородку, выполненную от опорной пластины в сторону оси лопаточной решетки, и внутренний венец, соединенный с радиальной кольцевой перегородкой и имеющий внутреннюю поверхность, на которой закреплен истираемый материал.

Компрессорный узел турбомашины включает воздухозаборный канал, ступень сжатия воздуха, содержащую подвижное колесо компрессора и решетку предварительной закрутки, расположенную выше по потоку от подвижного колеса компрессора для регулирования скорости воздуха в воздушном потоке на входе подвижного колеса и содержащую множество лопаток с регулируемым углом установки.

Изобретение относится к держателю трубы для удаления насыщенного маслом воздуха из турбомашины. Держатель (5), предназначенный для удержания трубы для удаления насыщенного маслом воздуха из турбомашины, содержащий радиально внутреннюю кольцевую часть (6), предназначенную для установки вокруг упомянутой трубы, и ребра (11), простирающиеся наружу в радиальной плоскости от кольцевой части (6), образуя угол (α) с радиальным направлением.

Изобретение относится к держателю трубы для отвода насыщенного маслом воздуха турбогенератора. Держатель (5), выполненный с возможностью удержания трубы (4) для отвода насыщенного маслом воздуха турбогенератора, содержащий внутреннюю кольцевую в радиальном направлении часть (9, 10), выполненную с возможностью монтажа вокруг упомянутой трубы (4), и лопатки (11), наклоненные по отношению к осевому направлению кольцевой части (9, 10) и по отношению к радиальной плоскости.

Композитная лопасть включает корпус 11 композитной лопасти, который состоит из композитного материала, включающего термоотверждающийся полимер или термопластический полимер и армирующие волокна, который изготавливается путем формования, и металлическую оболочку 12, которая прикрепляется к секции 11A передней кромки, включающей переднюю кромку 11a корпуса 11 композитной лопасти и поверхности 11b лопасти в окрестности передней кромки 11a посредством клейкой пленки 13, изготовленной путем пропитывания сетчатого материала твердым связующим веществом, чтобы покрывалась секция 11A передней кромки, причем незаполненная секция 11d, которая образуется на стадии удаления части избыточной толщины 15 и 16, остающейся на передней кромке 11a после формования, и не нуждается в обработке путем закругления передней кромки, помещается на переднюю кромку 11a секции 11A передней кромки в корпусе 11 композитной лопасти.
Наверх