Способ определения температуры стеклования



Способ определения температуры стеклования
Способ определения температуры стеклования

Владельцы патента RU 2665500:

федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") (RU)

Изобретение относится к области измерений и может быть использовано для исследования теплофизических характеристик электроизоляционных материалов. Согласно предложенному способу определения температуры стеклования проводят серии испытаний вдавливанием индентора в поверхность испытуемого материала при плавно изменяющейся температуре. Вдавливание проводят шаровым индентором с регистрацией в процессе испытания диаграммы вдавливания в координатах «нагрузка - глубина отпечатка», с использованием которой рассчитывают значения твердости по Бринеллю НВt, для каждой из температур испытания. Строят график зависимости твердости по Бринеллю НВt, от температуры испытания. Аппроксимируют полученный график двумя прямыми линиями, соответствующими температурным интервалам до и после стеклования. Температуру стеклования определяют по точке пересечения полученных прямых линий на графике зависимости твердости НВt, от температуры. Технический результат – повышение производительности и точности определения температуры стеклования. 2 ил.

 

Изобретение относится к области измерений и может быть использовано для исследования теплофизических характеристик электроизоляционных материалов, в частности - температуры стеклования.

Известен способ определения температуры стеклования полимерных и композиционных материалов (Авторское свидетельство SU №1295309, МПК G01N 25/04, публ. 07.03.1987 г.), согласно которому образец из испытуемого материала, предварительно нагруженный заданным усилием сжатия, непрерывно нагревают, измеряя при этом зависимость термического удлинения образца от температуры, и за температуру стеклования принимают температуру образца в момент потери им продольной устойчивости, который соответствует моменту прекращения или уменьшения его термического удлинения.

Недостатками настоящего технического решения являются необходимость изготовления образцов, ограниченная область применения вследствие возможности испытания материалов только с заранее известным модулем упругости, а также сложность в связи с необходимостью применения большого количества оборудования и оснастки для проведения испытаний.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения температуры стеклования изоляционных материалов методом микроиндентирования (Нацик В.Д., Фоменко Л.С., Лубенец С.В. Исследование ползучести и стеклования эластомеров методом микроиндентирования: эпоксидная смола и нанокомпозиты на ее основе // Физика твердого тела, 2013, Том 55, Вып. 5, С. 940-952), согласно которому на поверхность испытуемого материала напыляют тонкую металлическую пленку, затем проводят серию испытаний микроиндентированием четырехгранной пирамидой Виккерса при различных температурах, измеряют при каждом испытании длины диагоналей отпечатков, с учетом которых определяют значения твердости по Виккерсу, и по полученной зависимости твердости по Виккерсу от температуры определяют температуру стеклования, соответствующую резкому изменению значений твердости.

Недостатками данного технического решения являются высокая трудоемкость, связанная с необходимостью предварительного напыления на поверхность испытуемого материала тонкой металлической пленки для визуализации отпечатков, низкая производительность и субъективность полученных результатов, связанные с необходимостью измерения геометрических параметров отпечатков оператором, а также низкая точность измерений в связи с влиянием механических свойств металлических покрытий на определяемые значения твердости.

Технической задачей предлагаемого изобретения является возможность определения твердости испытуемого материала по глубине отпечатка с использованием программных средств.

Технический результат заключается в снижении трудоемкости, повышении производительности и точности определения температуры стеклования.

Это достигается тем, что в известном способе определения температуры стеклования, включающем проведение серии испытаний вдавливанием индентора в поверхность испытуемого материала при плавно изменяющейся температуре, вдавливание проводят шаровым индентором с регистрацией в процессе испытания диаграммы вдавливания в координатах «нагрузка - глубина отпечатка», с использованием которой рассчитывают значения твердости по Бринеллю HBt для каждой из температур испытания, строят график зависимости твердости по Бринеллю HBt от температуры испытания, аппроксимируют полученный график двумя прямыми линиями, соответствующими температурным интервалам до и после стеклования, а температуру стеклования определяют по точке пересечения полученных прямых линий на графике зависимости твердости HBt от температуры.

Сущность предлагаемого изобретения поясняется чертежами, где на фиг. 1 представлена диаграмма вдавливания шарового индентора для электроизоляционного материала типа RIP (изоляционный материал, полученный на основе высушенной в вакууме и пропитанный эпоксидной смолой крепированной бумаги) при температуре +23°С, на фиг. 2 изображена зависимость твердости по Бринеллю HBt от температуры испытания для электроизоляционного материала типа RIP.

Реализация предлагаемого способа определения температуры стеклования осуществляется следующим образом.

Испытания выполняют на стационарном приборе-твердомере, реализующем метод инструментального индентирования и оборудованном температурной камерой. Для испытуемого материала проводят серию испытаний вдавливанием индентора при плавно изменяющейся температуре. Диапазон температур испытаний и шаг между температурами испытаний выбирают исходя из физико-механических свойств материала и требуемой точности определения температуры стеклования. При каждой из заданных температур в поверхность материала вдавливают индентор в форме шара радиусом R с непрерывно возрастающей нагрузкой до заданного максимального значения Рmах, и в процессе испытания непрерывно регистрируют диаграмму вдавливания в координатах «нагрузка Р - глубина отпечатка t».

Для каждого вдавливания рассчитывают значение твердости по Бринеллю HBt с использованием формулы

где tк - глубина отпечатка под нагрузкой Рmах.

По результатам определения твердости HBt при различных температурах строится зависимость твердости HBt от температуры.

Экспериментально установлено (Демидов А.Н., Каримбеков М.А., Марченков А.Ю., Матюнин В.М. Оперативная оценка температуры стеклования изоляционных материалов для высоковольтных вводов // Материаловедение. 2016. №8. С. 11-15), что для электроизоляционных материалов на основе эпоксидной смолы зависимость твердости HBt от температуры имеет два характерных участка, которые можно аппроксимировать прямыми линиями с разным наклоном, а точка пересечения этих прямых соответствует температуре стеклования.

Достоверность данной методики определения температуры стеклования подтверждена ГОСТ 32618.2-2014, регламентирующим определение температуры стеклования Тс по точке пересечения двух прямых линий, аппроксимирующих зависимость термического удлинения образца от температуры в температурных интервалах до и после стеклования. Переход материала в высокоэластичное состояние при достижении температуры стеклования сопровождается снижением сопротивления материала пластической деформации, например, увеличением удлинения под действием растягивающих напряжений или снижением твердости при вдавливании индентора. В связи с подобием зависимостей термического удлинения образца и твердости по Бринеллю HBt от температуры, в предлагаемом способе температура стеклования Тс определяется по аналогии с ГОСТ 32618.2-2014 по точке пересечения двух прямых линий, аппроксимирующих зависимость твердости по Бринеллю HBt от температуры в температурных интервалах до и после стеклования.

За счет использования глубины отпечатков в качестве геометрического параметра, измеряемого с использованием программных средств прибора-твердомера при вдавливании индентора, в предлагаемом способе отсутствует необходимость нанесения покрытий на испытуемую поверхность для визуализации отпечатков и необходимость визуального измерения геометрических параметров отпечатков. Таким образом, повышается производительность испытаний и их точность, т.к. исключается искажение определяемых значений характеристик твердости наносимыми на поверхность материала покрытиями. Также снижается влияние человеческого фактора на полученные результаты. Это позволяет повысить производительность и объективность способа определения температуры стеклования, а также повысить его точность.

Реализация предлагаемого способа показана на примере испытания электроизоляционного материала типа RIP. Испытание инструментальным индентированием при разных температурах было выполнено шаровым индентором радиусом R=1,25 мм с максимальной заданной нагрузкой Рmах=18 кгс (177 Н) и скоростью деформирования 0,5 мм/мин. Необходимая температура испытаний создавалась в климатической камере. Испытания проводились при температурах +23,+40,+50,+60,+70,+80,+90,+100,+110 и +120°С. На фиг. 1 в качестве примера представлена диаграмма вдавливания, зарегистрированная при температуре испытания +23°С. На фиг. 1 приняты следующие обозначения: Р - нагрузка вдавливания; t -глубина отпечатка; Рmах - максимальная нагрузка вдавливания; tк - глубина отпечатка под нагрузкой Рmах.

Значения твердости по Бринеллю HBt определялись программными средствами с использованием данных диаграмм вдавливания и формулы (1), после чего была построена зависимость твердости по Бринеллю HBt от температуры испытания, показанная на фиг. 2. На фиг. 2 приняты следующие обозначения: HBt - твердость по Бринеллю; Т - температура; Тс -температура стеклования. По точке пересечения аппроксимирующих экспериментальные данные наклонных прямых на графике зависимости твердости по Бринеллю HBt от температуры была определена температура стеклования TC=98°C.

Использование изобретения позволяет снизить трудоемкость, повысить производительность и точность определения температуры стеклования.

Способ определения температуры стеклования, заключающийся в проведении серии испытаний вдавливанием индентора в поверхность испытуемого материала при плавно изменяющейся температуре, отличающийся тем, что вдавливание проводят шаровым индентором с регистрацией в процессе испытания диаграммы вдавливания в координатах «нагрузка - глубина отпечатка», с использованием которой рассчитывают значения твердости по Бринеллю HBt для каждой из температур испытания, строят график зависимости твердости по Бринеллю HBt от температуры испытания, аппроксимируют полученный график двумя прямыми линиями, соответствующими температурным интервалам до и после стеклования, а температуру стеклования определяют по точке пересечения полученных прямых линий на графике зависимости твердости HBt от температуры.



 

Похожие патенты:

Изобретение относится к области измерений, в частности к исследованию характеристики трещиностойкости деталей и конструкций, и направлено на повышение производительности, информативности способа и расширение его области применения.

Изобретение относится к измерительной технике для измерения микромеханических характеристик внутренних поверхностей изделий относится к области машиностроения, в частности для контроля физико-механических свойств внутренних поверхностей сквозных и глухих отверстий с тонким покрытием.

Изобретение относится к области испытаний и измерений механических свойств материалов неразрушающим методом, в частности при помощи индентационного устройства с использованием автоматизированной измерительной системы.

Изобретение относится к измерительной технике для определения модуля упругости материала тонких покрытий. Сущность: определяют толщину покрытия и твердость материала основы известными методами, производят нагружение (внедрение) алмазного пирамидального наконечника в плоскую поверхность изделия без покрытия и с покрытием, имеющим известную толщину, на глубину, превышающую толщину покрытия, записывают диаграммы изменения величины нагрузки с увеличением глубины внедрения, по которым строят зависимость изменения параметра, характеризующего отношение квадратов глубин внедрения в поверхность с покрытием и без покрытия от относительной глубины внедрения, определенных при одной и той же нагрузке, и сравнивают со значениями аналогичного параметра, рассчитанного по теоретическим зависимостям, функционально зависимым от величины контактного модуля упругости слоистого тела, включающего в себя модуль упругости материала покрытия, и определяют модуль нормальной упругости материала покрытия по результатам максимального совпадения значений параметра, полученного из эксперимента, с набором значений параметра, полученного теоретическими расчетами, в диапазоне значений относительных глубин внедрения индентора от 0,2 до 1,0.

Изобретение относится к области физики материального контактного взаимодействия, конкретно к способу определения твердости и параметров прочности любой материальной среды через общефизические параметры: угол ϕ° внутреннего трения и удельное сцепление C (МПа).По предлагаемому способу определяют для твердой беспористой среды угол ϕ°=arccos[(D/2-So)/(D/2)] и удельное сцепление C=(σт/2)(1+sinϕ°)/cosϕ° (МПа), а для пористой дисперсной материальной среды угол ϕ° и удельное сцепление C (МПа) определяют по закону Ш.

Твердомер // 2614336
Изобретение относится к области строительства и эксплуатации грунтовых аэродромов и зимних дорог, подготавливаемых методом уплотнения снега. Твердомер содержит корпус (1) со стойками (3) и основанием (2) с центральным отверстием.

Изобретение относится к области измерений и может быть использовано для исследования механических характеристик материалов деталей и конструкций. Сущность: осуществляют вдавливание индентора в деформированный материал изделия под нагрузкой F1, проводят дополнительно второе вдавливание в деформированный материал изделия под нагрузкой F2, причем F2>F1, а затем дважды вдавливают индентор в недеформированный материал изделия под этими же нагрузками.

Изобретение относится к тестеру твердости материалов, в частности к компактному прибору для определения твердости с цифровым дисплеем. Тестер содержит магнитный держатель, опору, устройство измерения усилия, индентор, электронную печатную плату, цифровой дисплей и устройство приложения усилия и измерения глубины отпечатка, состоящее из ручного маховичка, кодового датчика угла поворота и микрометрической винтовой пары.

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической обработки, то есть определению условий, при которых данные сплавы приобретают требуемые свойства.

Изобретение относится к области древесиноведения и деревообрабатывающей промышленности и касается оценки механических свойств натуральной и модифицированной древесины.

Изобретение относится к области пищевой промышленности, в частности к кондитерской отрасли, и может быть использовано для контроля качества кондитерских изделий. Способ определения витамина B2 в кондитерских изделиях включает последовательное проведение кислотного и ферментного гидролиза пробы с последующей фильтрацией, фотолиз, флюориметрическое определение и обработку результатов, при этом перед фотолизом проводят концентрирование водной фазы, полученной после фильтрации, путем твердофазной экстракции.

Изобретение относится к медицине, а именно к гистологии, и может быть использовано в диагностике нарушений сперматогенеза различной этиологии, включая идиопатическое бесплодие.

Изобретение относится к аналитической химии и касается способов определения ионов хрома (III) и железа (III) в растворе при совместном присутствии. Способ определения концентрации ионов хрома (III) и железа (III) при совместном присутствии в растворе включает добавление к анализируемому раствору, содержащему ионы хрома (III) и железа (III), 4 мл раствора трилона Б (концентрацией 80 г/л), нагревание полученной смеси на кипящей водяной бане в течение 10 мин, охлаждение смеси до комнатной температуры, добавление к охлажденной смеси 0,5 мл водного раствора аммиака, доведение дистиллированной водой до 25 мл, определение оптической плотности раствора и вычисление концентрации ионов по калибровочным зависимостям, при этом измерение оптической плотности производят при 660 нм для ионов хрома (III) и при 315 нм для ионов железа (III).

Изобретение относится к геологии и может быть использовано при определении генезиса морских осадочных отложений, а именно мелкозернистых песчаников, алевролитов, алевроаргиллитов и аргиллитов.

Изобретение относится к медицине, в частности, возможно использование в здравоохранении, медицинской и спортивной диагностике. Способ определения уровня стрессоустойчивости человека включает определение величины максимальной интенсивности свечения проб со слюной I0 и величины максимальной интенсивности свечения контрольных проб без слюны Ik, вычисление люциферазного индекас LI0 пробы со слюной и люциферазного индекса LIk контрольной пробы без слюны, вычисление люциферазного индекса стресса по формуле LIstress=LI0-LIk, при этом LIstress 18-30% соответствует среднему уровню стрессоустойчивости; LIstress более 30% - высокому; LIstress менее 18% - низкому уровню стрессоустойчивости.

Изобретение относится к способу анализа и/или обработки оплодотворенного яйца. Способ обработки и/или анализа оплодотворенного яйца, включающий размещение яйца горизонтально зародышем вверх, выполнение отверстия в скорлупе сбоку со стороны зародыша, проведение анализа и/или обработки зародыша и закрытие отверстия в скорлупе, отличается тем, что по изобразительной информации с использованием методов компьютерной графики формируют трехмерную модель фрагмента скорлупы на 8-15% больше размера будущего отверстия, по трехмерной модели изготавливают форму, в которой из двухкомпонентного силикона для литьевых форм отливают крышку для закрытия будущего отверстия, после выполнения отверстия в скорлупе и проведения анализа и/или обработки зародыша закрывают отверстие в скорлупе путем наложения на отверстие силиконовой крышки и ее разглаживания от отверстия к краям.

Группа изобретений относится к области медицины. Предложены способ и набор для исследования на присутствие цитомегаловируса (CMV), вируса простого герпеса I (HSV I), вируса простого герпеса II (HSV II), вируса Эпштейна-Барра (EBV), HHV6, HHV7, HHV8, парвовируса 19, вируса гепатита В (HBV), вируса гепатита С (HCV), коксаки-вируса, вирусов иммунодефицита человека (HIV-1, HIV-2), аденоассоциированного вируса (AAV), вируса краснухи, HPV, хламидий, токсоплазмы и норовируса внутри сперматозоидов.
Изобретение относится к области медицины, в частности к онкологии, и предназначено для прогноза рака молочной железы с использованием цифрового изображения гистологического препарата, приготовленного из образца опухолевой ткани.

Изобретение относится к области ветеринарии и предназначено для диагностики мутантного аллеля, вызывающего короткий позвоночник или брахиспину у крупного рогатого скота.

Изобретение относится к области медицины, а именно к диагностике путем исследования биологической жидкости с помощью физических и химических методов исследования.

Группа изобретений относится к измерению содержания влаги в композитных материалах, имеющих полимерный связующий материал. Представлена система для измерения поглощенной влаги в композитном материале, характеризующаяся тем, что она включает: изделие из композитного материала, включающее множество слоев материала, уплотненного посредством действия давления и теплоты, в котором каждый слой материала получают из матрицы смолы, армированной волоконным материалом, вставку, заделанную в указанном композитном материале, которая установлена между первым и вторым из указанных слоев материала, в ограниченной зоне поверхности раздела, вне которой указанные первый и второй слои материала являются смежными, причем в указанной вставке сформирована, по меньшей мере, одна полость, которая находится в гидравлическом сообщении с указанными первым и вторым слоями материала, и датчик окружающей влажности, установленный внутри указанной полости и способный создавать сигнал, указывающий содержание влаги в атмосфере, присутствующей в указанной полости.
Наверх