Способ получения трифенилфосфата

Изобретение относится к способу получения трифенилфосфата и может использоваться в химической промышленности. Предложенный способ характеризуется тем, что трихлорид фосфора подвергают взаимодействию с фенолом при мольном соотношении 1:3,15-1:3,5, причем трихлорид фосфора добавляют к фенолу в течение 1,5-4 ч при температуре 40-45°С в инертной атмосфере, после выделения хлороводорода реакционную смесь нагревают до температуры 150-180°С, выдерживают при этой температуре в течение 45-90 мин под вакуумом при остаточном давлении 300-350 мм рт.ст. и отгоняют избыточное количество фенола при остаточном давлении 5-10 мм рт.ст., полученный трифенилфосфит охлаждают, разбавляют органическим растворителем и постепенно добавляют окислитель, реакционную смесь кипятят в течение 30-40 мин, затем охлаждают до комнатной температуры, нейтрализуют окислитель, отделяют органическую фазу, растворитель упаривают, трифенилфосфат выделяют вакуумной перегонкой. Предложен новый эффективный способ получения трифенилфосфата, который позволяет получать трифенилфосфат из малотоксичных компонентов с высоким выходом. 3 з.п. ф-лы, 7 пр.

 

Изобретение относится к органической химии, в частности, к способу получения трифенилфосфата, который используется в качестве пластификатора и антипирена при производстве полимерных изделий.

Известно множество способов получения трифенилфосфата, которые можно раз-делить на группы по типу исходного фосфорсодержащего сырья:

Общепринятый способ получения трифенилфосфата, основан на взаимодействии фенола с оксихлоридом фосфора в присутствии каталитических количеств кислот Льюиса (AlCl3, TiCl4, MgCl2).

Оксихлорид фосфора прибавляют к фенолу при температуре 80-90°С на протяжении 90 мин, далее реакционную смесь нагревают до температуры 150-160°С и выдерживают при данной температуре в течение 5-6 ч. Полученная смесь перегоняется под вакуумом при давлении 5-6 мм рт. ст. Выход трифенилфосфата составляет 94-97 масс %. US 3077491, опубл. 12.02.1963.

К недостаткам данного способа можно отнести использование высокотоксичного оксихлорида фосфора относящегося к первому классу опасности. Полученный данным способом трифенилфосфат может содержать трудноотделимые примеси катализатора этерификации.

Известен способ, основанный на взаимодействии белого фосфора с фенолом в присутствии окислителя и катализатора окисления. Armstrong К.М., Kilian, P., Catalytic synthesis of triaryl phosphates from white phosphorus. Eur. J. Inorg. Chem., 2011, p. 2138-2147.

К недостаткам способа можно отнести использование высокотоксичного и пожароопасного белого фосфора.

Известен способ получения трифенилфосфата, согласно которому к фенолу в органическом растворителе по капле добавляют оксихлорид фосфора и металлический катализатор при температуре от 0 до 100°С в течение от 1 до 10 ч. Последующей обработкой реакционной смеси получают трифенилфосфат с выходом 90,5 масс % и чистотой 99,1%. CN 105254666, опубл. 20.01.2016.

К недостаткам способа можно отнести использование высокотоксичного оксихлорида фосфора, недостаточно высокий выход и чистота продукта.

Наиболее близким к предлагаемому изобретению является способ получения трифенилфосфата, основанный на окислении трифенилфосфита. В качестве окислителя использован кислород, который при перемешивании и под давлением подают в нагретую до 115-120°С смесь трифенилфосфита и металлосодержащего катализатора. Окисление ведут до понижения давления в реакционном сосуде. Продолжительность процесса 5 ч. Полученный трифенилфосфат не содержит примесей трифенифосфита. US 4469644 А, опубл. 04.09.1984.

К недостатку способа следует отнести то, что при использовании кислорода процесс протекает в жестких условиях и требует использования катализаторов окисления, это негативно сказывается на качестве трифенилфосфата.

Техническая задача, решаемая заявленным изобретением, заключается в разработке эффективного способа получения трифенилфосфата с высоким выходом и чистотой, используя более доступное и менее токсичное исходное сырье - трихлорид фосфо-pa (II класс опасности).

Разработанный двухстадийный экологически безопасный способ получения трифенилфосфата из трихлорида фосфора и фенола с получением на первой стадии трифенилфосфита и его последующим окислением на второй стадии в трифенилфосфат под действием водного раствора пероксида водорода в качестве окислителя, обеспечивает выход трифенилфосфата до 92,9-97,0 масс % по PCl3 с чистотой не менее 99,9% по данным спектра ЯМР 31Р. Обе стадии процесса проводят последовательно в одном реакторе.

Стадия I

Технический результат состоит в повышении выхода и чистоты трифенилфосфата при использовании более экологически безопасных реагентов.

Технический результат достигается тем, что трихлорид фосфора подвергают взаимодействию с фенолом, взятых при мольном соотношении 1:3,15-1:3,5, причем трихлорид фосфора добавляют к фенолу в течение 1,5-4 ч при температуре 40-45°С в инертной атмосфере, после выделения хлороводорода реакционную смесь нагревают до температуры 150-180°С, выдерживают при этой температуре в течение 45-90 мин под вакуумом при остаточном давлении 300-350 мм рт. ст. и отгоняют избыточное количество фенола при остаточном давлении 5-10 мм рт. ст., полученный трифенилфосфит охлаждают, разбавляют органическим растворителем и постепенно добавляют окислитель, реакционную смесь кипятят в течение 30-40 мин, затем охлаждают до комнатной температуры, нейтрализуют окислитель, отделяют органическую фазу, растворитель упаривают, трифенилфосфат выделяют вакуумной перегонкой. Причем, органический растворитель выбирают из группы: метил-трет-бутиловый эфир, хлористый метилен, этилацетат. В качестве окислителя используют 30-60%-ный водный раствор пероксида водорода в количестве 1,05-1,15 экв., а окислитель нейтрализуют добавлением безводного сульфита натрия в течение 15-20 мин.

Выход трифенилфосфата составляет 92,9-97,0 масс % по PCl3 и чистотой не менее 99,9% по данным спектра ЯМР 31Р.

Изобретение поясняется следующими примерами:

Пример 1.

В треххгорлую колбу объемом 3 л, заполненную азотом, помещают 1120,5 г (11,90 моль) фенола (3,3 экв.). В капельную воронку загружают 494,0 г (3,60 моль) трихлорида фосфора, в поглотительную склянку для улавливания хлороводорода заливают 864,5 г дистиллированной воды. Реакционную смесь нагревают на масляной бане до температуры 45°С при перемешивании и добавляют по каплям трихлорид фосфора в течение 240 мин. Далее реакционную смесь перемешивают в течение 20 мин, нагревают до температуры 70°С в течение 10 мин, выдерживают при данной температуре в течение 10 мин и нагревают до температуры 160°С в течение 30 мин и выдерживают в течение 1,5 ч. Отсоединяют и взвешивают поглотительную склянку с водным раствором хлороводорода, получают 1242,0 г соляной кислоты (30,4 масс %). Производят замену обратного холодильника на дистилляционную насадку с прямоточным холодильником и приемной колбой. Реакционную колбу нагревают до температуры 170°С и выдерживают при этой температуре в течение 60 мин под вакуумом при остаточном давлении 300-350 мм рт. ст. Постепенно снижают вакуум до остаточного давления 10 мм рт. ст. и собирают дистиллят фенола 149,3 г. После отгонки фенола получают трифенилфосфит массой 1091,3 г. Выход трифенилфосфата составляет 97,8 масс %.

К 1091,3 г (3,52 моль) трифенилфосфита, полученного на первой стадии, прибавляют 2267 мл (1678,6 г) метил-трет-бутилового эфира. Прибавляют при перемешивании 348,9 г (3,90 моль) 38%-ного водного раствора пероксида водорода (1,1 экв.), наблюдается плавный самопроизвольный разогрев смеси, который переходит в кипение. После добавления реакционную смесь кипятят в течение 35 мин, затем охлаждают до комнатной температуры, при интенсивном перемешивании небольшими порциями вносят 51,6 г (0,41 моль) безводного сульфита натрия в течение 15 мин. Реакционную массу перемешивают в течение 20 мин. Далее полученную смесь загружают в делительную воронку, отделяют нижний водный слой, органическую фазу упаривают в вакууме далее повышают температуру до 150-200°С и отгоняют фракцию фенола массой 21,3 г, содержащую 1,5 масс % трифенилфосфата. Постепенно повышают температуру куба до 250-260°С и отгоняют в отдельную емкость трифенилфосфат массой 1103,1 г, Т кип.240-242°С/10 мм рт. ст. Выход трифенилфосфата 94,04 масс % по PCl3. Чистота трифенилфосфата по данным ЯМР 31Р>99,9%.

Пример 2.

Способ осуществляют аналогичным образом по примеру 1, только на первой стадии выдержку в вакууме при 180°С проводят в течение 45 мин, на второй стадии в качестве растворителя при окислении используют этилацетат. Получили трифенилфосфат с выходом 93,8 масс %. Чистота 99,9% по данным спектра ЯМР 31Р.

Пример 3.

Способ осуществляют аналогичным образом по примеру 1, только на первой стадии выдержку в вакууме при 150°С проводят в течение 90 мин, на второй стадии в качестве растворителя при окислении используют хлористый метилен. Получили трифенилфосфат с выходом 93,9 масс %. Чистота 99,9% по данным спектра ЯМР 31Р.

Пример 4.

Способ осуществляют аналогичным образом по примеру 1, только на второй стадии в качестве окислителя используют 60%-ный водный раствор пероксида водорода. Получили кристаллический трициклогексилфосфин с выходом 60 масс % и трифенилфосфат с выходом 93,3 масс %. Чистота 99,9% по данным спектра ЯМР 31Р.

Пример 5.

Способ осуществляют аналогичным образом по примеру 1, только на второй стадии в качестве окислителя используют 30%-ный раствор пероксида водорода 1,15 экв, а в качестве растворителя - хлористый метилен. Получили трифенилфосфат с выходом 97 масс %. Чистота 99,9% по данным спектра ЯМР 31Р.

Пример 6.

Способ осуществляют аналогичным образом по примеру 1, только на первой стадии фенол взят в количестве 3,15 экв., выдержку в вакууме проводят при температуре 180°С. Получили трифенилфосфат с выходом 92,9 масс %. Чистота 99,9% по данным спектра ЯМР 31Р.

Пример 7.

Способ осуществляют аналогичным образом по примеру 1, только на первой стадии фенол взят в количестве 3,5 экв., выдержку в вакууме проводят при температуре 150°С. Получили трифенилфосфат с выходом 94,1 масс %. Чистота 99,9% по данным спектра ЯМР 31Р.

1. Способ получения трифенилфосфата, характеризующийся тем, что трихлорид фосфора подвергают взаимодействию с фенолом, взятых при мольном соотношении 1:3,15-1:3,5, причем трихлорид фосфора добавляют к фенолу в течение 1,5-4 ч при температуре 40-45°С в инертной атмосфере, после выделения хлороводорода реакционную смесь нагревают до температуры 150-180°С, выдерживают при этой температуре в течение 45-90 мин под вакуумом при остаточном давлении 300-350 мм рт.ст. и отгоняют избыточное количество фенола при остаточном давлении 5-10 мм рт.ст., полученный трифенилфосфит охлаждают, разбавляют органическим растворителем и постепенно добавляют окислитель, реакционную смесь кипятят в течение 30-40 мин, затем охлаждают до комнатной температуры, нейтрализуют окислитель, отделяют органическую фазу, растворитель упаривают, трифенилфосфат выделяют вакуумной перегонкой.

2. Способ по п. 1, отличающийся тем, что органический растворитель выбирают из группы: метил-трет-бутиловый эфир, хлористый метилен, этилацетат.

3. Способ по п. 1, отличающийся тем, что в качестве окислителя используют 30-60%-ный водный раствор пероксида водорода в количестве 1,05-1,15 экв.

4. Способ по п. 1, отличающийся тем, что нейтрализуют окислитель добавлением безводного сульфита натрия в течение 15-20 мин.



 

Похожие патенты:

Изобретение относится к соединению, представленному формулой (1), или его фармацевтически приемлемым солям. В формуле (1) R1 представляет собой C1-6алкильную группу; R2 и R3 являются одинаковыми или отличными друг от друга и каждый представляет собой атом водорода или C1-6алкильную группу; X2, X3 и X4 являются одинаковыми или отличными друг от друга и каждый представляет собой атом водорода или атом галогена; и X5 представляет собой атом водорода или -P(=O)(OH)2.

Изобретение относится к соединению формулы (I), сепарационному материалу формулы (II), колонке для экстракорпорального удаления С-реактивного белка (СРБ) и устройству ее содержащему, которые могут быть применены в медицине: (II)где b выбран из 2 и 3; X выбран из -SH, -NH2, -C≡CH, -CH=CH2, -N3 и -CHO; R1 и R2 выбраны из -CH3, -C2H5, -C3H7, -C4H9, -C5H11 и -C6H13, или R1 и R2 образуют вместе с атомом азота, с которым они соединены, гетероцикл, выбираемый из: , и где атомы водорода могут быть заменены атомами фтора; -L- в формуле (I) выбран из -(CH2)m-O-C(O)-NH-(CH2)p1-, -(CH2)m-O-(CH2)p1-, -(CH2)m-C(O)-NH-(CH2)p1-, -(CH2)m-NH-C(O)-(CH2)p1-, -(CH2)m-C(O)-NH-(CH2)n-O-(CH2)p1-, -(CH2)m-O-C(O)-NH-(CH2)n-O-(CH2)p1-, -(CH2)m-C(O)-NH-(CH2)n-C(O)-NH-(CH2)p1-O-(CH2)p2-, и -(CH2)m-O-C(O)-NH-(CH2)n-C(O)-NH-(CH2)p1-O-(CH2)p2-; m, n, p1, p2, o, r, q выбраны из 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; Y выбран из -CH(OH)-CH2-NH-, -CH(OH)-CH2-S-, -CH2-NH-, -NH-CH2-, -CH2-CH2-S-, -S-CH2-CH2-, ,, ,,,, и ;-L- в формуле (II) выбран из -La-, -La-Le-, -La-Lb-Le- и -La-Lb-Ld-Lc-Le-, где -La- выбран из -(CH2)m-, -(CH2-CH2-O)m-CH2-; -Lb- и -Lc- выбраны из -O-, -NH-C(O)-, -C(O)- NH-, -O-C(O)- NH- и -SO2-; -Ld- выбран из -(CH2)n-, -(CH2-CH2-O)n-CH2-; -Le- выбран из -(CH2)p1-, -(CH2)p1-O-(CH2)p2-; -L*- выбран из -L*a-, -L*a-L*e- и -L*a-L*b-L*e-, где -L*a- выбран из -(CH2)o-, -(CH2-CH2-O)o-C2H4-, -(CH2-CH2-O)o-CH2- и -CH2-CH(OH)-CH2-; -L*e- выбран из -(CH2)q-, -C2H4-(O-CH2-CH2)q-, и CH2-(O-CH2-CH2)q-; -L*b- выбран из -O-(CH2)r-O-, -S-(CH2)r-S-, -SO2-, -S-, -O-, -NH-C(O)-, -C(O)-NH- и -S-S-; и A представляет собой твердую подложку из агарозы и сефарозы®.

Изобретение относится к соединению формулы I в любой из его стереоизомерных форм или смеси стереоизомерных форм в любом соотношении, или его фармацевтически приемлемым солям, которые обладают свойством ингибирования натрий-кальциевого обмена (NCX).

Предложена кристаллические частицы, содержащие (R)-3-(4-(2-(2-метилтетразол-5-ил)пиридин-5-ил)-3-фторфенил)-5-гидроксиметил оксазолидин-2-он диводород фосфат, имеющие рентгенограмму, характеризующуюся пиками при 14.7°, 15.2°, 16.6°, 20.3°, 26.8° и 28.2°, а также составы на их основе, пригодные для использования в фармацевтической промышленности.

Изобретение относится к способу синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, с применением в качестве фосфорилирующего агента фосфорного ангидрида или полифосфорной кислоты, отличающийся тем, что фосфорилируют оксиэтилированные нонилфенолы с соответствующей степенью оксиэтилирования и получают продукт фосфорилирования с содержанием 92-96 мас.% эфиров фосфорной или полифосфорной кислот, структурные формулы которых представлены ниже, где n=4-9, причем нейтрализация реакционной смеси щелочным агентом не обязательна.

Изобретение относится к способу получения L-α-глицерофосфорилхолина фармакопейного качества и может быть использовано в фармацевтической промышленности. Предложенный способ включает этапы, на которых сорбируют L-α-глицерофосфорилхолин из метанольного обезжиренного раствора L-α-глицерофосфорилхолина, полученного переэтерификацией лецитина, на катионите в среде безводного растворителя, элюируют его с катионита обессоленной водой, обесцвечивают элюат активированным углем, очищают от минеральных и органических солей на ионообменных смолах и концентрируют, при этом сорбцию и элюирование с катионита проводят при пониженной температуре 0÷5°C, а перед концентрированием применяют фильтрацию через стерилизующий фильтр.

Изобретение относится к соединению формулы (I), его энантиомерам и фармацевтически приемлемым солям и композициям на их основе, которые могут применяться в онкологии: где X и Y представляют собой С или N, но не могут быть одинаковыми, A1 и А2 вместе с атомами, несущими их, образуют гетероцикл Het, выбранный из 5,6,7,8-тетрагидроиндолизина или индолизина, или A1 и А2 представляют собой Н, (С1-С6)полигалогеналкил или (С1-С6)алкил, Т представляет собой Н, (С1-С6)алкил, необязательно замещенный одним-тремя атомами галогена, (C1-C4)алкил-NR1R2, или (С1-С4)алкил-OR6, R1 и R2 представляют собой Н или (С1-С6)алкил, или R1 и R2 с атомом азота, несущим их, образуют гетероциклоалкил, R3 представляет собой циклоалкил, гетероциклоалкил, арил или гетероарил, R4 представляет собой фенил, замещенный в пара-положении группой -ОРО(ОМ)(ОМ'), -ОРО(ОМ)(O-М1+), -OPO(O-M1+)(O-M2+), -ОРО(O-)(O-)М32+, -ОРО(ОМ)(O[CH2CH2O]nCH3), или -ОРО(O-М1+)(O[CH2CH2O]nCH3), где М и М' представляют собой Н, (С1-С6)алкил, (С2-С6)алкенил, (С2-С6)алкинил, циклоалкил или гетероциклоалкил из 5 или 6 членов, тогда как М1+, М2+ и М32+ представляют собой фармацевтически приемлемые катионы, n равен от 1 до 5, при этом атомы углерода предыдущих групп или их возможных заместителей могут быть дейтерированными, R5 представляет собой Н или галоген, (С1-С6)алкил или (C1-С6)алкокси, R6 представляет собой Н или (С1-С6)алкил, Ra, Rb, Rc и Rd представляет собой R7, галоген, (С1-С6)алкокси, гидрокси, NR7R7'-CO-(C0-C6)алкил-O-, или заместители пары (Rb,Rc) вместе с атомами углерода, несущими их, образуют кольцо из 5-7 членов с 1 или 2 гетероатомами, выбранными из О и S, при этом один или несколько атомов углерода кольца могут быть дейтерированными или замещенными 1-3 группами, выбранными из галогена и (С1-С6)алкила, R7 и R7' представляют собой H, (С1-С6)алкил, или R7 и R7' вместе с атомом азота, несущим их, образуют гетероцикл, состоящий из 5-7 членов, "арил" означает фенил, нафтил, бифенил или инденил, "гетероарил" означает моно- или бициклическую группу, состоящую из 5-10 членов c по меньшей мере одним ароматическим фрагментом и 1-4 гетероатомами, выбранными из O, S и N, "циклоалкил" означает моно- или бициклическую, неароматическую, карбоциклическую группу из 3-10 членов, "гетероциклоалкил" означает моно- или бициклическую, неароматическую, конденсированную или спирогруппу из 3-10 кольцевых членов с 1-3 гетероатомами, выбранными из О, S, SO, SO2 и N, причем арильные, гетероарильные, циклоалкильные и гетероциклоалкильные группы, алкил, алкенил, алкинил и алкокси могут быть замещены посредством 1-3 групп, выбранных из (С1-С6)алкила, (С3-С6)спиро, (С1-С6)алкокси, (С1-С6)алкил-S-, гидрокси, оксо или N-оксида, нитро, циано, -COOR', -OCOR', NR'Rʺ, (С1-С6)полигалогеналкила, трифторметокси, (С1-С6)алкилсульфонила, галогена, арила, гетероарила, арилокси, арилтио, циклоалкила, гетероциклоалкила, необязательно замещенного одним или несколькими галогенами или алкилами, R' и Rʺ представляют собой Н или (C1-С6)алкил, Het группа может быть замещена 1-3 группами, выбранными из (C1-С6)алкила, гидрокси, (С1-С6)алкокси, NR1'R1ʺ и галогена, при этом R1' и R1ʺ принимают значения, определенные для групп R' и Rʺ.

Изобретение относится к электрохимическому способу получения трис(2-хлорэтил)фосфата из красного фосфора. Способ характеризуется тем, что процесс электролиза проводят в непрерывном режиме путем постоянной подачи порошкообразного красного фосфора и смеси этиленхлоргидрина, воды и электропроводящей добавки в циркуляционный контур проточного бездиафрагменного электролизера фильтр-прессного типа, где суспензию подвергают электролизу, с отводом части электролизуемой смеси из циркуляционного контура через фильтр, после которого из отфильтрованного раствора выделяют трис(2-хлорэтил)фосфат отгонкой электролита, который вместе с отфильтрованным красным фосфором возвращают на электролиз.

Изобретение относится к производному дифенилсульфида, которое может применяться в медицине в качестве антагониста S1P3 рецептора, общей формулы (1) где R1 представляет собой С1-6-алкоксигруппу, R2 представляет собой пропил или аллил, X представляет собой метилен или атом кислорода и Z представляет собой атом галогена.
Настоящее изобретение относится к способу получения раствора диалкилфосфата гадолиния, который может быть использован при производстве синтетических каучуков, цис-1,4-гомополимеров и цис-1,4-сополимеров изопрена и бутадиена.
Наверх