Цифровой измеритель температуры

Предлагаемое изобретение относится к термометрии. Заявлен цифровой измеритель температуры, который содержит мостовую измерительную схему 1, в плечи которой включены датчик температуры 2 и термочувствительный элемент терморезистора косвенного подогрева-охлаждения (ТКП) 3, измерительная диагональ которой через последовательно соединенные усилитель 4, селектируемый пиковый детектор (СПД) 5, запоминающую емкость 6, генератор управляемой частоты (ГУЧ) 7, стандартизатор импульсов по длительности и амплитуде 8 подключена к полупроводниковой обмотке подогрева-охлаждения ТКП 3. Выход ГУЧ 7 соединен с входом цифрового индикатора температуры 9, диагональю питания моста и цепью управления пикового детектора 5. Питание мостовой схемы однополярными импульсами высокой скважности исключает саморазогрев измерительным током плеч моста. Технический результат - повышение точности работы цифрового измерителя температуры и расширение его функциональных возможностей. 1 ил.

 

Предлагаемое изобретение относится к термометрии и может быть использовано в качестве датчика температуры биологических и физических объектов.

Известно устройство для измерения температуры, термопреобразователь, генератор измерительных импульсов, схему сравнения импульсов, генератор счетных импульсов, генератор эталонных импульсов, счетчик с цифровым индикатором, генератор запускающих импульсов и генератор импульсов уставки (Патент США №3768310, кл. 73-362А, опубл. 1973).

Недостатком этого устройства является сравнительно низкая точность работы.

Известен также цифровой измеритель температуры (Авт. свид. SV№1835056 A3 G01K 7/00) содержащий датчик температуры, преобразователь температура-частота, счетчик, цифровой индикатор, генератор тактовых импульсов.

Недостатком этого измерителя является также невысокая точность работы.

Наиболее близким к предполагаемому изобретению по технической сущности является цифровой измеритель температуры (Патент РФ №2561998 С2, G01K 7/00, 2015), содержащий датчик температуры, терморезистор, цифровой индикатор, мостовая измерительная схема, в плечи которой включены датчик температуры и терморезистор, охваченная петлей отрицательной обработки связи, своим входом связанной с измерительной диагональю моста, а выходом - с диагональю питания моста и состоящей из последовательно соединенных усилителя и генератора управляемой частоты, при этом вход цифрового индикатора температуры соединен с выходом генератора управляемой частоты.

Недостатком этого измерителя температуры является также сравнительно высокая погрешность, обусловленная значительной мощностью, подводимой к диагонали питания моста для разогрева терморезистора измерительным током, что приводит также к некоторому разогреву датчика температуры этим же импульсным измерительным током, а также ограниченные функциональные возможности, обусловленные односторонним изменением температуры, например, в виде ее роста.

Техническая сущность предполагаемого изобретения состоит в осуществлении непрерывно-дискретного характера обработки информации при определенной энергии импульса питания обмотки подогрева-охлаждения терморезистора косвенного подогрева-охлаждения.

Техническим результатом предполагаемого изобретения является повышение точности работы цифрового измерителя температуры и расширение его функциональных возможностей.

Технический результат достигается тем, что цифровой измеритель температуры, содержащий датчик температуры и терморезистор, включенные в мостовую измерительную схему, охваченную петлей отрицательной обратной связи, своим входом связанной с измерительной диагональю моста, состоящей из усилителя, генератора управляемой частоты, выход которого соединен с диагональю питания моста и входом цифрового индикатора, дополнительно снабжен селектируемым пиковым детектором, запоминающей емкостью, стандартизатором импульсов по длительности и амплитуде и полупроводниковой обмоткой подогрева-охлаждения терморезистора, при этом детектор своим входом подключен к выходу усилителя, а выходом - к запоминающей емкости и входу генератора управляемой частоты, соединенному своим выходом через стандартизатор импульсов с обмоткой подогрева-охлаждения терморезистора, а выход генератора также связан с цепью управления работой селектируемого пикового детектора.

На фиг. 1 представлена блок-схема устройства.

Цифровой измеритель температуры содержит мостовую измерительную схему 1, в плечи которой включены датчик температуры 2 и термочувствительный элемент терморезистора косвенного подогрева-охлаждения (ТКП) 3, измерительная диагональ, которой через последовательно соединенные усилитель 4, селектируемый пиковый детектор (СПД) 5, запоминающую емкость 6, генератор управляемой частоты (ГУЧ) двуквадрантный 7, стандартизатор импульсов по длительности и амплитуде 8 подключена к обмотке подогрева-охлаждения ТКП 3, при этом выход ГУЧ 7 соединен с входом цифрового индикатора температуры 9, диагональю питания моста и цепью управления пикового детектора 5.

Цифровой измеритель температуры работает следующим образом.

Датчик температуры 2 находится в измеряемой среде. ТКП 3 находится в термостате при постоянной температуре (например, комнатной). Постоянная времени датчика температуры 2 превышает постоянную времени терморезистора с полупроводниковой обмоткой.

В исходном состоянии мостовая схема сбалансирована при заданной температуре датчика 2. При увеличении температуры датчика 2 изменяется его сопротивление и появляется разбаланс моста, который усиливается усилителем 4 и через СПД 5 управляет частотой двуквадрантного ГУЧ 7, который своими однополярными импульсами положительной или отрицательной полярности высокой скважности управляет работой СПД 5 и осуществляет питание мостовой схемы 1, а также через стандартизатор импульсов 8 разогревает или охлаждает на основании эффекта Пельтье полупроводниковую обмотку ТКП 3 до температуры при которой сопротивление его термочувствительного элемента удовлетворяет уравнению уравновешенного моста. Частота следования импульсов ГУЧ 7 и полярность импульсов регистрируются цифровым индикатором. На запоминающей емкости 6 поддерживается напряжение с выхода усилителя 4 при открытом состоянии селектируемого пикового детектора 5. В цепь управления СПД 5 может быть введен блок задержки (на схеме условно не показан) для выделения строб-импульса.

При действии импульса с выхода двуквадрантного генератора ГУЧ 7 через открытый по цепи управления детектор СПД 5 заряжает строб-импульсом запоминающую емкость 6. Емкость управляет частотой FВЫХ двуквадрантного частотно-импульсного генератора ГУЧ 5 с характеристикой:

,

где K - коэффициент пропорциональности, UС - напряжение на емкости 6. Положительному напряжению Uc соответствуют импульсы положительной полярности, а отрицательному напряжению - импульсы отрицательной полярности ГУЧ.

Питание мостовой схемы однополярными положительными или отрицательными импульсами высокой скважности исключает саморазогрев измерительным током плеч моста. Питание полупроводниковой обмотки подогрева - охлаждения ТКП 3 стандартизированными импульсами по длительности и амплитуде обеспечивает строгое постоянство электрической энергии от каждого импульса. Энергия, рассеиваемая в обмотке подогрева-охлаждения ТКП 3, будет всегда прямо пропорциональна частоте ГУЧ 7, что обеспечивает высокую точность измерений температуры, а также расширение функциональных возможностей измерителя температуры при нагревании и охлаждении датчика температуры относительно температуры, при которой осуществлялась балансировка моста.

Цифровой измеритель температуры, содержащий датчик температуры, терморезистор, включенные в мостовую измерительную схему, охваченную петлей отрицательной обраткой связи своим входом связанной с измерительной диагональю моста, состоящей из усилителя разбаланса моста, генератор управляемой частоты, выход которого соединен с диагональю питания моста и входом цифрового индикатора, отличающийся тем, что он дополнительно снабжен селектируемым пиковым детектором, запоминающей емкостью, стандартизатором импульсов по длительности и амплитуде и полупроводниковой обмоткой подогрева-охлаждения терморезистора, при этом детектор своим входом подключен к выходу усилителя, а выходом - к запоминающей емкости и входу генератора управляемой частоты, соединенному своим выходом через стандартизатор импульсов по длительности и амплитуде с полупроводниковой обмоткой подогрева-охлаждения терморезистора, выход генератора также связан с цепью управления работой селектируемого пикового детектора.



 

Похожие патенты:

Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения физических величин с первичными резисторными датчиками. Устройство содержит термометр сопротивления RT, включенный в мостовую схему 1, диагональ питания которой через балластный резистор 2 подключена к обмотке 3 трансформатора 4, а измерительная диагональ через последовательно соединенную выходную обмотку трансформатора 5 связана с входом усилителя 6 переменного тока.

Изобретение относится к термометрии и может быть использовано для измерения температуры высокотемпературных процессов в газодинамике в условиях воздействия высоких давлений и газодинамического напора.

Группа изобретений относится к способу обнаружения обледенения на летательном аппарате и датчику обледенения. Для обнаружения обледенения размещают датчик обледенения на наружной поверхности летательного аппарата, создают заряд на поверхности слоя пироэлектрического материала датчика.

Способ измерения температуры наружного воздуха относится к способам измерения температуры наружного воздуха и отображения ее текущего значения на экране компьютера.

Изобретение относится к устройствам для изготовления микротермопар с рабочим спаем, образованным сваркой встык, и может быть использовано для оперативного изготовления в лабораторных условиях единичных или мелкосерийных партий микротермопар различного типа из проволоки с диаметрами от 200 мк и менее при подготовке и проведении теплофизических и тепловых испытаний в условиях быстропротекающих процессов теплообмена при значительных градиентах температуры, характерных для конструкций аэрокосмической техники, ядерной энергетики и металлургии.

Изобретение относится к области измерительной техники и может быть использовано для одновременной регистрации температуры и взаимного предельного перемещения составных частей изделия в условиях высокой температуры.

Изобретение относится к вибрационной метрологии. Устройство для диагностики оборудования состоит из первичного и вторичного преобразователей.

Изобретение относится к области ракетной техники, а именно к устройствам обеспечения непрерывного контроля температуры заправленного окислителя в топливном баке ракеты космического назначения (РКН) «Союз-2».

Изобретение относится к области измерения температур, в частности, измерения температуры резания при точении. Исследование процессов резания предполагает измерение и фиксирование различных явлений, протекающих в технологической системе.

Изобретение относится к способу измерения температуры намотанного компонента, содержащему подачу известного постоянного тока в калибровочный провод (1) из резистивного материала; причем сопротивление калибровочного провода меняется вместе с температурой согласно известному закону; измерение разности потенциалов между зажимами (7a, 7b) упомянутого калибровочного провода; и этап вычисления, в ходе которого разность потенциалов преобразуется в среднюю температуру калибровочного провода; причем упомянутый калибровочный провод (1) намотан внутри катушки и уложен в ряд витков «Вперед» (5) и в ряд витков «Обратно» (6), объединенных попарно по существу с одинаковыми геометрической формой и местом расположения.

Изобретение относится к системам управления и контроля производственных процессов и может быть использовано для измерения температуры технологической текучей среды.

Изобретение относится к измерительной технике и направлено на повышение точности измерений. .

Изобретение относится к устройствам для измерения температуры удаленных объектов и может быть использовано при проведении геотермических исследований, входящих в обязательный комплекс геофизических методов контроля за эксплуатацией нефтегазовых месторождений и подземных хранилищ газа.

Изобретение относится к медицинской технике и предназначено для измерения температуры тела человека. .

Изобретение относится к измерительной технике. .

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. .

Изобретение относится к электронике, в частности к интегральным датчикам температуры. .

Изобретение относится к измерительной технике, в частности к измерению температуры с помощью полупроводниковых терморезисторов, сопротивление Rт которых: Rт= Re R в заданном интервале измерения температуры Т: T1 T T2, где Rто=Rтпри Т=То=293,15К; Rт1=Rт при Т=Т1, Rто и В характеристики полупроводниковых терморезисторов.

Предлагаемое изобретение относится к термометрии. Заявлен цифровой измеритель температуры, который содержит мостовую измерительную схему 1, в плечи которой включены датчик температуры 2 и термочувствительный элемент терморезистора косвенного подогрева-охлаждения 3, измерительная диагональ которой через последовательно соединенные усилитель 4, селектируемый пиковый детектор 5, запоминающую емкость 6, генератор управляемой частоты 7, стандартизатор импульсов по длительности и амплитуде 8 подключена к полупроводниковой обмотке подогрева-охлаждения ТКП 3. Выход ГУЧ 7 соединен с входом цифрового индикатора температуры 9, диагональю питания моста и цепью управления пикового детектора 5. Питание мостовой схемы однополярными импульсами высокой скважности исключает саморазогрев измерительным током плеч моста. Технический результат - повышение точности работы цифрового измерителя температуры и расширение его функциональных возможностей. 1 ил.

Наверх