Способ резки стекла


B23K2101/16 - Пайка или распаивание; сварка; плакирование или нанесение покрытий пайкой или сваркой; резка путем местного нагрева, например газопламенная резка; обработка металла лазерным лучом (изготовление изделий с металлическими покрытиями экструдированием металла B21C 23/22; нанесение облицовки или покрытий литьем B22D 19/08; литье погружением B22D 23/04; изготовление составных слоистых материалов путем спекания металлического порошка B22F 7/00; устройства для копирования и регулирования на металлообрабатывающих станках B23Q; покрытие металлов или материалов металлами, не отнесенными к другим классам C23C; горелки F23D)

Владельцы патента RU 2677519:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) (RU)

Изобретение относится к области прецизионной микрообработки материалов, в частности к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности, и может быть использовано для прецизионной резки стекла на предприятиях и в научно-исследовательских центра. Способ резки стекла включает формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла. Гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс. Изобретение позволяет ускорить процесс резки стекла за счет уменьшения количества стадий. 4 пр., 1 ил.

 

Изобретение относится к области прецизионной микрообработки материалов, в частности, к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности и может быть использовано для прецизионной резки стекла на предприятия и в научно-исследовательских центра.

Наиболее распространенным в производстве способом резки стекла является резка алмазом. В данном методе алмазом на поверхности стекла создается царапина заданной геометрии. Далее за счет приложения изгибающего напряжения к стеклу, трещина, располагающаяся под царапиной, распространяется вглубь образца, и происходит разлом стекла. При этом края скола обладают низким качеством, наличием микротрещин, большой шириной пропила. Этим методом практически невозможна резка тонких образцов.

Распространенным методом резки лазерным излучением является метод термораскалывания. В данном методе сначала происходит разогрев поверхности и приповерхностного стекла сфокусированным лазерным пучком. При этом стекло расширяется и возникают напряжения растяжения, которые усиливаются дальнейшим воздействием расфокусированного пучка. В результате происходит образование трещины во всю толщину стекла.

Другим активно развивающимся методом является резка с помощью лазерной абляции. В основе данного метода лежит испарение обрабатываемого материала за счет линейного поглощения лазерной энергии и последующего нагрева поверхности. Применяются, как правило, эксимерные лазеры, работающие в УФ диапазоне, и СО2-лазеры, работающие в ИК диапазоне. Данный способ также обладает рядом недостатков: низкая скорость обработки, образование трещин, оплавление соседних с областью резки участков стекла, меньшая по сравнению с алмазом, но все равно достаточно большая ширина пропила, необходимость линейного поглощения материала на длине волны лазера. Для уменьшения ширины пропила в случае лазерной обработки применяют комбинированные методы, включающие в себя лазерное нагревание и параллельное охлаждение струей воды [US 5609284, US 6787732].

Улучшение параметров резки получают за счет использования импульсных лазеров. За счет высокой пиковой интенсивности в области фокусировки происходят процессы нелинейного поглощения. Такой механизм снимает ограничения на длину волны используемого лазера, что позволяет фокусировать излучение в пятно микронного и субмикронного масштаба, отсюда повышенная прецизионность резки. В то же время в результате использования данного метода по-прежнему формируются микротрещины и происходит засорение поверхности аблировавшим материалом поверхности.

Наиболее близким по технической сущности и достигаемому результату является способ обработки материала лазерным пучком, представленный в [K. Mishik, Ultrashort pulse laser cutting of glass by controlled fracture propagation, 2016], состоящий в модифицировании стекла гребенками лазерных импульсов фемтосекундной длительности с частотой следования импульсов внутри гребенки 25 нc.

Указанный прототип обладает рядом достоинств: при модифицировании стекла в таком режиме реализуется механизм аккумуляции тепла, при котором тепло, возникшее в фокальной точке при воздействии лазером на стекло, не успевает рассеяться до следующего импульса в гребенке. Таким образом, в ходе облучения происходит непрерывный рост температуры. Это позволяет избавиться от напряжений, неизбежно сопутствующих модифицированию структуры стекла.

Обратной стороной эффекта аккумуляции тепла является оплавление границ модификации, что приводит к заплавлению микротрещин, лежащих в основе хрупкости стекла, таким образом, препятствуя последующему разлому образца стекла. В указанном прототипе процесс резки состоит из трех стадий: сначала со скорость 1 мм/сек «выжигается» линия на поверхности стекла, затем с той же скоростью создается линия в объеме стекла. Далее к образцу прикладывается изгибающее напряжение и происходит разлом стекла. Такая многостадийность существенно замедляет процесс. Оптимальная скорость резки, выявленная авторами, составляет 2 мм/сек.

Использование гребенок фемтосекундных импульсов с межимпульсным интервалом порядка пс позволяет существенно повысить эффективность процесса резки стекол. Известно, что при взаимодействии лазерного импульса со стеклом возникает ударная волна [A. Mermillod-Blondin, Dynamics of femtosecond laser induced void-like structures in fused silica], создающая разряжение в модифицируемой области, которое растет в субнаносекундном масштабе. При этом, если лазерный импульс взаимодействует с модифицированной областью в момент возникновения разряжения, происходит увеличение количества стабильных дефектов структуры, приводящих к образованию необходимых для успешной резки микротрещин.

Задачей настоящего изобретения является ускорение процесса резки стекла за счет уменьшения количества стадий.

Поставленная задача решается способом резки стекла, включающим формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла, при этом гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс.

Для резки стекла применялась установка (Фиг. 1) на основе фемтосекундного лазера (1) с рабочей длиной волны 1030 нм. Лазерные импульсы длительностью 180 фс и энергией 4 мкДж пропускались через интерферометр (2), представляющий собой пластину стекла с отражающими покрытиями на обеих поверхностях (коэффициент отражения 0,75), для создания гребенки импульсов. В зависимости от толщины использованного интерферометра (1 мм, 2 мм, 4 мм, 7 мм) изменялось расстояние между импульсами внутри гребенки (10 пс, 20 пс, 40 пс, 70 пс). Далее излучение фокусировалось в объем стекла (образец) (4) объективом (3) с числовой апертурой 0,15 на глубину 10 мкм. Запись линий, формируемых в результате воздействия гребенок импульсов на стекло, осуществлялась с помощью перемещения образца, установленного на трехкоординатный стол (5), относительно неподвижного лазерного пучка со скоростью от 1 до 2 мм/сек.

Достижение заявленного технического результата подтверждается следующими примерами. За оптимальную скорость записи линии принималась такая скорость, при которой разлом образца проходил строго по записанной линии.

Пример 1

С помощью интерферометра толщиной 1 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 10 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1,7 мм/сек. После этого был проведен разлом стекла.

Пример 2

С помощью интерферометра толщиной 2 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 20 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1,5 мм/сек. После этого был проведен разлом стекла.

Пример 3

С помощью интерферометра толщиной 4 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 40 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1,5 мм/сек. После этого был проведен разлом стекла.

Пример 4

С помощью интерферометра толщиной 7 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 70 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1 мм/сек. После этого был проведен разлом стекла.

Выводы

Как видно из приведенных выше примеров, использование гребенок фемтосекундных импульсов с межимпульсным расстояние от 10 до 70 пс позволяет уменьшить количество стадий резки стекла до двух: 1) нанесение линии разлома на поверхности образца в один проход, 2) разлом образца. Применение гребенок импульсов в резке стекла позволило увеличить скорость процесса на 15-50%.

Способ резки стекла, включающий формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла, отличающийся тем, что гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс.



 

Похожие патенты:

Изобретение относится к лазерной резке изделий из хрупких неметаллических материалов, частично поглощающих лазерное излучение, и может быть использовано в авиационной, космической, автомобильной и других отраслях промышленности для резки крупногабаритных плоских и гнутых стеклоизделий сложной формы.

Изобретение относится к способам получения трехмерных изображений в объеме оптического носителя на основе прозрачных материалов и может быть применено в производстве художественной, сувенирной, демонстрационной и другой продукции.

Изобретение относится к способам обработки материалов, в частности к способам формообразования и резания твердых неметаллических материалов. .
Изобретение относится к легкой промышленности и касается способа изготовления декоративных изделий из стекла с титановым покрытием. .
Изобретение относится к легкой промышленности и касается способа изготовления декоративных зеркал и изделий из оптически прозрачных материалов. .

Изобретение относится к способам резки и скрайбирования прозрачных неметаллических материалов, преимущественно особо твердых с полупроводниковым покрытием и без него, и может использоваться в электронной промышленности.

Изобретение относится к способам резки хрупких неметаллических материалов, в частности к способам лазерной резки анизотропных материалов, к которым относятся различные монокристаллы, например сапфир и кварц, а также различные полупроводниковые материалы.

Изобретение относится к художественной обработке изделий декоративно-прикладного искусства из оптически прозрачных материалов и может быть использовано для получения узоров и рисунков с особыми световыми эффектами в стекле.

Изобретение относится к производству керамических материалов и может быть использовано при изготовлении плиток различного назначения. .

Изобретение относится к лазерной резке изделий из хрупких неметаллических материалов, частично поглощающих лазерное излучение, и может быть использовано в авиационной, космической, автомобильной и других отраслях промышленности для резки крупногабаритных плоских и гнутых стеклоизделий сложной формы.

Изобретение относится к лазерной резке изделий из хрупких неметаллических материалов, частично поглощающих лазерное излучение, и может быть использовано в авиационной, космической, автомобильной и других отраслях промышленности для резки крупногабаритных плоских и гнутых стеклоизделий сложной формы.

Изобретение относится к способам получения трехмерных изображений в объеме оптического носителя на основе прозрачных материалов и может быть применено в производстве художественной, сувенирной, демонстрационной и другой продукции.

Изобретение относится к способам получения трехмерных изображений в объеме оптического носителя на основе прозрачных материалов и может быть применено в производстве художественной, сувенирной, демонстрационной и другой продукции.

Изобретение относится к способам резки (термораскалывания) хрупких материалов, таких как пластины из любого типа стекла, всех типов керамики, а также полупроводниковых материалов, и может использоваться в автомобилестроении для изготовления стекол и зеркал, в электронной промышленности, а также в других областях техники.

Изобретение предназначено для разделения стекла и образования на нём скосов. При разделении стекла с помощью лазерного излучения на заготовки, изготовленные из стекла, сфокусированный лазерный луч (1) направляют на стекло, подлежащее разделению, и при образовании по меньшей мере двух заготовок стекло разделяется, при этом в области разреза расположены боковые поверхности (15).

Изобретение относится к способам резки хрупких неметаллических материалов, в частности сапфировых пластин импульсным лазерным излучением с длиной волны 1064 нм. Изобретение может быть использовано в различных областях техники и технологий для безотходной и высокоточной резки (термораскалывания) сапфировых пластин.

Изобретение относится к способу лазерной резки хрупких прозрачных неметаллических материалов, например стекла, и может быть использовано в стекольной, авиационной, автомобильной и других отраслях промышленности.

Изобретение относится к способам обработки стеклоизделий, в частности к способам притупления острых кромок стеклоизделий. Способ включает обработку кромки стекла сфокусированным лазерным лучом при относительном перемещении стеклоизделия и/или луча.

Группа изобретений касается структурного блока, имеющего в качестве линии инициирования разлома лазерный трек, который состоит из углублений, полученных от лазерного луча, для подготовки последующего разделения этого структурного блока на отдельные конструктивные элементы.

Изобретение относится к способу неинвазивной очистки металлических деталей от антиадгезионных покрытий на основе полимеров и может быть использовано в машиностроении, приборостроении и спецхимии для увеличения времени бездефектной эксплуатации деталей.
Наверх