Способ реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком

Изобретение относится к медицине, а именно к радиологии и медицинской биофизике, и может быть использовано для реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком. Размещают радиохромную пленку на поверхности тела пациента. Проводят протонную терапию очага поражения. В режиме интерактивного просмотра принятого плана лечения с предписанной дозой (), просматривая по слоям томограмму пациента с одной линией постоянной дозы, значение которой изменяют в процессе просмотра, определяют максимальную дозу на поверхности () в месте входа сканирующего пучка. Далее в процессе проведения терапии измеряют максимальную дозу на поверхности () в том же месте радиохромной пленкой, закрепленной на теле пациента. После чего проводят реконструкцию подводимой дозы в очаге поражения по формуле: где - расчетная максимальная доза на поверхности, - измеренная максимальная доза на поверхности, - предписанная доза. При этом устанавливают перекрестие секущих плоскостей на краю изображения поверхности, по крайней мере, в коронарном и сагиттальном сечениях в месте входа сканирующего пучка. Изменяют значения указателя таким образом, чтобы какая-то часть линии изодозы, по крайней мере, в коронарном и сагиттальном сечениях проходила по краю изображения поверхности в месте входа сканирующего пучка. Сканируют облученную пленку, используя устройство-сканер, и получают изображение оптической плотности. Изображение оптической плотности обрабатывают пакетом программ обработки для получения изображения, которое содержит значение пикселя с максимальной дозой на поверхности в месте входа сканирующего пучка, значение которой находят в титуле по указателю. Способ обеспечивает быстрый, сразу после облучения, реконструктивный контроль подводимой дозы в очаг поражения и оценку возможных реакций со стороны кожных покровов путем расчета подводимой дозы с использованием значений предписанной дозы, а также расчетной и измеренной максимальных доз на поверхности. 4 з.п. ф-лы, 2 ил., 1 пр.

 

Изобретение относится к ядерной медицины, а именно к: технологиям планирования протонной терапии, технологиям медицинской рентгеновской томографии, технологиям измерения радиационных полей радиохромными пленками и сопутствующим областям техники.

Уровень техники

Обеспечение быстрого дозиметрического контроля подводимой дозы и реакций со стороны кожных покровов пациента в процессе проведения лучевой терапии онкологических новообразований включает использование систем планирования - пакета прикладных программ, обеспечивающих расчет поглощенной дозы, при воздействии излучений разного типа на живую ткань; дозиметрических систем и оборудования, измеряющих поглощенную тканью дозу; соответствующих вычислительных средств, позволяющих визуализировать распределение и поглощение энергии излучения.

Дозиметрический контроль процесса терапии может осуществляться в реальном времени, в процессе проведения сеансов лечения, что связано с применением высокотехнологичного оборудования и разработкой соответствующего математического аппарата.

В настоящее время, известен способ дозиметрического контроля, в частности, верификации пробега протонов (Hsin-Hon Lin, at al. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy. http://dx.doi.org/10.1016/j.radphyschem.2016.04.020; Yunhe Xie, at al. Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy. http://dx.doi.org/10.1016/j.ijrobp.2017.04.027), основанный на измерении дозы гамма излучения (фотонов) продуктов ядерных реакций протонов в процессе реализации плана радиотерапии (облучения) сканирующим пучком. Указанный способ осуществляют путем измерения дистальной части профиля дозы фотонов коллимированной гамма-камерой, включающей линейную цепочку сцинтилляционных детекторов и расположенной вблизи очага поражения, перпендикулярно к оси пучка; визуализации профиля дозы фотонов на одной линейке с томограммой пациента; аппроксимации профиля дозы фотонов тремя линейными участками - проксимальный участок нарастания дозы, участок ослабления дозы, начинающийся с максимума и дистальный участок профиля, характеризуемый меньшим угловым коэффициентом участка прямой; оценки длины пробега протонов, как глубины половинного ослабления измеренной дозы фотонов на втором линейном участке профиля.

К одному из недостатков способа можно отнести труднодоступность для широкой медицинской практики сложных и дорогостоящих технологий дозиметрического контроля в реальном времени.

Контроль подводимой к опухоли дозы может осуществляться косвенно, путем построения модельных задач, близких в смысле медицинской физике к реальному процессу лучевой терапии, с использованием фантомов, имитирующих тело человека в смысле радиационной физики. К таковым можно отнести способ дозиметрического контроля, применяемый в радиотерапии пассивным протонным пучком (Ryosuke Kohno, at al. In Vivo Dosimetry of an Anthropomorphic Phantom Using the RADPOS for Proton Beam Therapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2016, 5, 177-183. Japan.). Способ включает измерение дозы в реальном масштабе времени с использованием дозиметров MOSFET и системы их позиционирования RADPOS, а также антропометрического фантома головы чеовека Salem (The Phantom Laboratory, Salem, CA, USA). Для проведения дозиметрии указанным способом, дозиметры MOSFET помещают в специальные отверстия, расположенные аксиально в верхней части фантома Salem. Система RADPOS определяет положение дозиметров в отверстиях с точностью до 1 мм. Условия облучения PTV (planning target volume) реального пациента, переносимые на фантом и фактор коррекции ЛПЭ-зависимости дозиметров MOSFET рассчитывают с помощью пакета программ планирования методом Монте-Карло. Результаты проведенных измерений на пучке протонов с энергией 190 МэВ и шириной распределенного пика Брэгга 60 мм были сопоставлены с соответствующими расчетами объемного распределения дозы. Они оказались сравнимы по гамма-индексу в пределах толерантности - 3 мм и 3%.

В данном случае недостаток способа заключается в его инвазивности, что ограничивает клиническое применение.

Сравнительно быстрый контроль подводимой дозы может осуществляться путем измерения поверхностной дозы как с реконструкцией поглощенной в опухоли дозы, так и без нее, особенно в случаях близко расположенных к поверхности опухолей. Так, например, известен способ постлучевого контроля, используемый в радиотерапии пучком фотонов (V. Rudat et al. In vivo surface dose measurement using GafChromic film dosimetry in breast cancer radiotherapy: comparison of 7-field IMRT, tangential IMRT and tangential 3D-CRT. Radiation Oncology 2014, 9:156. Saad Specialist Hospita.), включающий измерение поверхностной дозы радиохромной пленкой типа GAFCHROMIC®. В соответствии с указанным способом, фрагменты пленки размером 3x3 см размещают на поверхности тела в месте локализации опухоли. Планирование радиотерапии пучком фотонов осуществляют пакетом программ планирования ХIO 4.4 (CMS, Inc. of St. Louis, Mo, USA). На КТ-изображении зоны патологии и зоны интереса - «кожные покровы» обрисовывают с отступом на 3 мм вглубь PTV (Planning Target Volume) от поверхности тела. Рассчитанную в ходе планирования среднюю дозу в зоне интереса считают поверхностной дозой. Постлучевой контроль указанным способом проводили у 50-ти пациентов в течение нескольких сеансов лечения. Различия между рассчитанной поверхностной дозой и дозой, измеренной пленкой в случае терапии встречными и несколькими центральными относительно опухоли пучками не превосходили 4.2% и 18.8% в первом и во втором случаях соответственно.

Недостаток способа заключается в достаточно грубой интерпретации поверхностной дозы на этапе планирования.

В смысле быстрого постлучевого дозиметрического контроля процесса протонной терапии, можно отметить способ, включающий измерение поверхностной дозы и реконструкцию неопределенности в пробеге протонов (является прототипом предлагаемого способа) при проведении радиотерапии пассивным протонным пучком опухолей легких с локализацией у дальней поверхности тела (Zheng Y. SU-E-T-449: In-Vivo Dosimetry and Range Verification for Proton Therapy. Med Phys. 2013 Jun; 40(6 Part 17):308. doi: 10.1118/1.4814882. Oklahoma City). В соответствии с этим способом, радиохромную пленку размещают на дальней поверхности тела и в процессе проведения терапии измеряют среднее значение поверхностной дозы. Программным пакетом планирования лучевой терапии ХIO 2.0 (CMS, Inc. of St. Louis, Mo, USA), на этапе подготовки радиотерапии рассчитывают распределение дозы по глубине (дозовую кривую) от входа пучка до выхода его на поверхность (расчетная поверхностная доза). Величину неопределенности в пробеге протонов оценивают по разности положений на дозовой кривой, значений расчетной и измеренной поверхностной дозы. Апробация способа на фантомах, на лабораторных животных и последующее клиническое применение показали, что измеренные и расчетные значения поверхностной дозы отличаются не более чем на 2%, а неопределенности в пробеге протонов составляют около 2 мм.

Однако, в ряде случаев выход пучка протонов за пределы опухоли может оказаться недопустимым и проведение дозиметрического контроля указанным способом окажется невозможным.

Раскрытие изобретения.

Технический результат заключается в обеспечение быстрого реконструктивного контроля подводимой дозы в очаг поражения и оценки возможных реакций со стороны кожных покровов в процессе протонной терапии сканирующим пучком.

Указанный технический результат достигается за счет того, что также как и в известном способе измеряют среднее значение поверхностной дозы.

Особенность заявляемого способа заключается в том, что в режиме интерактивного просмотра принятого плана лечения с предписанной дозой и просматривая по слоям томограмму пациента с одной линией постоянной дозы, значение которой изменяют в процессе просмотра, определяют максимальную дозу на поверхности в месте входа сканирующего пучка, далее в процессе проведения терапии, измеряют максимальную дозу на поверхности в том же месте радиохромной пленкой, закрепленной на теле пациента, после чего проводят реконструкцию подводимой дозы в очаге поражения по формуле:

где:

- расчетная максимальная доза на поверхности,

- измеренная максимальная доза на поверхности,

- предписанная доза.

Устанавливают перекрестие секущих плоскостей на краю изображения поверхности, по крайней мере, в коронарном и сагиттальном сечениях в месте входа сканирующего пучка. Значения указателя изменяют таким образом, чтобы какая-то часть линии изодозы, по крайней мере, в коронарном и сагиттальном сечениях проходила по краю изображения поверхности в месте входа сканирующего пучка. Облученную пленку сканируют, используя устройство - сканер и получают изображение оптической плотности. Изображение оптической плотности обрабатывают пакетом программ обработки изображений для получения изображения, которое содержит значение пикселя с максимальной дозой на поверхности в месте входа сканирующего пучка, значение которой находят в титуле по указателю.

Одно из преимуществ состоит в том, что на поверхности тела пациента рассчитывается и измеряется максимальная доза на небольшом участке поверхности в условиях значительных градиентов радиационного поля в месте входа сканирующего пучка, что уменьшает неопределенности реконструкции геометрического характера.

Изобретение поясняется подробным описанием, клиническим примером и иллюстрациями, на которых изображено:

Фиг. 1 - Окно интерактивного просмотра принятого плана лечения с тремя сечениями томограммы пациента: 1 - коронарное сечение томограммы; 2 - сагиттальное сечение; 3 - фронтальное сечение; 4 - линия постоянной дозы (изодоза); 5 - перекрестие секущих плоскостей; 6 - указатели уровня изодозы (относительный, абсолютный слева направо); 7 - место входа сканирующего пучка с фрагментом радиохромной пленки, размещенным на поверхности; 8 - очаг поражения подводимой дозой.

Фиг. 2 - Изображение радиационного поля на поверхности, измеренного радиохромной пленкой: 9 - изображение изодоз радиационного поля на поверхности в месте входа сканирующего пучка; 10 - указатель максимальной дозы, измеренной на поверхности в месте входа сканирующего пучка.

Способ осуществляют следующим образом.

На момент осуществления изобретения считают, что специалист располагает рассчитанным распределением дозы в очаге поражения и томограммой пациента - планом лечения с предписанной дозой , пакетом прикладных программ для интерактивного просмотра плана лечения, радиохромной пленкой (например, GAFCHROMIC®), устройством для получения цифрового изображения оптической плотности пленки (сканер) и пакетом прикладных программ для получения цифрового изображения распределения дозы на пленке.

Определение расчетной максимальной дозы на поверхности в месте входа сканирующего пучка указано на фиг. 1. Окно интерактивного просмотра плана лечения содержит, по крайней мере, изображения сечений (слоев) томограммы: коронарное сечение 1, сагиттальное сечение 2 и фронтальное сечение 3 с изображением на них линией постоянной дозы 4 (изодозы). Изображения сечений 1, 2, 3 соответствуют положению перекрестия 5 секущих плоскостей. Значения указателей уровня 6 изодозы устанавливаются в процентном отношении к предписанной дозе и автоматически пересчитывается в абсолютных единицах дозы (слева направо, соответственно), при этом предписанную дозу определяют, как 100%. Место входа сканирующего пучка 7 или расположение радиохромной пленки показано иллюстративно. Очаг поражения 8 обведен контуром, который наносится клиницистами на томограмму пациента.

Для определения максимальной дозы на поверхности в месте входа сканирующего пучка поступают следующим образом. Перекрестие 5 секущих плоскостей устанавливают на краю изображения поверхности по крайней мере в двух из сечений 1, 2, 3 в месте входа сканирующего пучка 7. Дополнительно изменяя значения указателя 6, находят максимальную дозу на поверхности. Показанная на Фиг. 1, линия изодозы 4 соответствует максимальной дозе на поверхности. Размер пикселя сечений 1, 2, 3 обеспечивает клиническое разрешение при определении положения изодозы. Положение перекрестия 5 секущих плоскостей управляется прокруткой и щелчком «мыши».

Далее дополнительно проводят процедуру нахождения измеренной максимальной дозы на поверхности в месте входа сканирующего пучка (Фиг. 1, 2). На изображении (Фиг. 1) иллюстративно показано расположение фрагмента радиохромной пленки, закрепленной на теле пациента в месте входа (7) сканирующего пучка. На Фиг. 2 показано изображение изодоз (9) радиационного поля на поверхности в месте входа сканирующего пучка, измеренного радиохромной пленкой в миллиметровом масштабе. Для получения изображения изодоз (9) облученную пленку первоначально сканируют, используя устройство - сканер и получают изображение (не показано), каждый пиксел которого содержит числовое значение оптической плотности радиочувствительного слоя пленки затем, исходя из этого изображения, в ходе дальнейшей обработки пакетом программ математической обработки изображений получают изображение (9), каждый пиксел которого содержит числовое значение поглощенной дозы. Данное изображение (Фиг. 2) содержит также титул с указателем максимальной дозы (10) и уровни изодоз (30, 50, 60, 70, 75, 80), указанные в процентном отношении к максимальной дозе, которые автоматически генерируются пакетом программ математической обработки изображений. Разрешающая способность изображения (9) устанавливается при сканировании и составляет обычно 150 Dpi (пикселов на дюйм).

Значение уровня (6) изодозы (4) (Фиг. 1 и 2), соответствующее максимальной дозе на поверхности в месте входа сканирующего пучка используют для реконструкции подводимой дозы D в очаг поражения (8), которая проводится по формуле:

в которой символом обозначена расчетная максимальная доза на поверхности, в соответствии с указателем уровня (6), символом обозначена измеренная максимальная доза на поверхности, в соответствии с указателем уровня (10) и символом обозначена предписанная доза.

Значение измеренной максимальной дозы на поверхности, в соответствии с указателем уровня (10) может использоваться специалистами клиники для контроля возможных реакций со стороны кожных покровов в процессе протонной терапии сканирующим пучком.

Клинический пример.

Больная Б. находилась в стационаре отделения протонной и фотонной терапии МРНЦ им. А.Ф. Цыба - филиал ФГБУ «НМИЦ радиологии» Минздрава России с диагнозом: эстезионейробластома полости носа. ПХТ. Очаг поражения: полость носа и решетчатый лабиринт.Очаговая доза: 63 Гр (Грей), разовая доза: 1.8 Гр, количество фракций 35, с двух полей в каждой фракции - 80, 100 градусов, весом (число частиц) 49.62% и 50.38% соответственно. Фрагмент радиохромной пленки фиксировался на термопластической маске пациента в области носа.

После проведения фракции облучения, окно интерактивного просмотра плана лечения пациента используется, как описано со ссылкой на Фиг. 1, для определения расчетной максимальной дозы на поверхности как значения указателя уровня (6). Изображение радиационного поля (Фиг. 2) на поверхности использовали для определения максимальной дозы на поверхности, которая принимается равной значению указателя уровня (10). Реконструкцию подводимой дозы получают как отношение:

Дополнительно, провели оценку возможных реакций со стороны кожных покровов по максимальной дозе на поверхности. В данном случае, при максимальной дозе на поверхности 1.37 Гр степень толерантности со стороны кожных покровов оценивали как Grade 2 (Grade 1, 2, 3 по возрастанию толерантности).

Использование данного изобретения позволит обеспечить быстрый (сразу после облучения) реконструктивный контроль подводимой дозы в очаг поражения и оценки возможных реакций со стороны кожных покровов по максимальной дозе.

1. Способ реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком, включающий размещение радиохромной пленки на поверхности тела пациента и в процессе проведения терапии измерение среднего значения поверхностной дозы, отличающийся тем, что в режиме интерактивного просмотра принятого плана лечения с предписанной дозой (), просматривая по слоям томограмму пациента с одной линией постоянной дозы, значение которой изменяют в процессе просмотра, определяют максимальную дозу на поверхности () в месте входа сканирующего пучка, далее в процессе проведения терапии, измеряют максимальную дозу на поверхности () в том же месте радиохромной пленкой, закрепленной на теле пациента, после чего проводят реконструкцию подводимой дозы в очаге поражения по формуле:

где

- расчетная максимальная доза на поверхности,

- измеренная максимальная доза на поверхности,

- предписанная доза.

2. Способ по п. 1, отличающийся тем, что устанавливают перекрестие секущих плоскостей на краю изображения поверхности, по крайней мере, в коронарном и сагиттальном сечениях в месте входа сканирующего пучка.

3. Способ по п. 1, отличающийся тем, что изменяют значения указателя таким образом, чтобы какая-то часть линии изодозы, по крайней мере, в коронарном и сагиттальном сечениях проходила по краю изображения поверхности в месте входа сканирующего пучка.

4. Способ по п. 1, отличающийся тем, что сканируют облученную пленку, используя устройство-сканер, и получают изображение оптической плотности.

5. Способ по п. 1, отличающийся тем, что изображение оптической плотности обрабатывают пакетом программ обработки для получения изображения, которое содержит значение пикселя с максимальной дозой на поверхности в месте входа сканирующего пучка, значение которой находят в титуле по указателю.



 

Похожие патенты:

Группа изобретений относится к области скважинных инструментов. Устройство для обнаружения гамма-излучения в стволе скважины содержит сцинтилляционный кристалл и трубчатый фотоэлектронный умножитель, размещенные в общем кожухе или в индивидуальных кожухах.

Изобретение относится к области регистрации фотонного излучения и касается блока детекторов для измерения фотонного излучения. Блок детекторов содержит первую разделенную вакуумированным межэлектродным промежутком систему двух электродов, один из которых предназначен для соединения с источником электрического напряжения питания, и вторую разделенную газонаполненным межэлектродным промежутком систему двух электродов, один из которых предназначен для соединения с источником электрического напряжения питания.

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки.

Изобретение относится к области регистрации ионизирующего излучения и касается способа регистрации распределения интенсивности мягкого рентгеновского излучения при наличии в спектре паразитного видимого и инфракрасного излучения.

Изобретение относится к области вычислительной техники для восстановления данных от устройства обнаружения излучения, которые были подвержены наложению импульсов.

Изобретение относится к области радиографической интроскопии, точнее к гамма-радиографической интроскопии массивных деталей и заготовок из тяжелых металлов. Способ гамма-радиографической интроскопии дополнительно содержит этапы, на которых располагают детекторы на минимальном расстоянии между собой, а изображение просвечиваемого объекта формируют путем накопления координат взаимодействий с тонким координатным детектором-рассеивателем тех прошедших через просвечиваемый объект гамма-квантов, которые одновременно оставили в обоих детекторах суммарную энергию, равную исходной, причем независимо от места поглощения в толстом детекторе полного поглощения гамма-квантов, комптоновски рассеянных тонким детектором.

Изобретение относится к области радиационного контроля (РК). Сущность изобретения заключается в том, что способ обнаружения и локализации подвижных источников ионизирующих излучений (ИИИ) в зоне контроля дополнительно содержит этапы, на которых располагают УД таким образом, чтобы контрольная полуплоскость - продолжение биссекторной плоскости упомянутого двугранного угла - пересекала траекторию перемещения контролируемых объектов в зоне контроля, вырабатывают сигнал «ОБНАРУЖЕНИЕ» при выполнении условия |Δn(t)|>Кэф⋅|±3 σ(tb)|, где Кэф>1 - коэффициент эффективности критерия обнаружения, σ(tb) - среднеквадратическое отклонение сигнала Δn(tb), усредняемого за время tb, достаточное для получения статистики требуемого качества, в интервалах времени, когда отсутствует сигнал об обнаружении, определяют по знаку сигнала Δn(t) сторону, с которой приближается объект контроля с обнаруженным ИИИ, вычисляют максимум модуля скорости изменения разностного сигнала max|dΔn(t)/dt|1 до смены ее знака и max|dΔn/dt|2 - после смены и вырабатывают сигнал «ЛОКАЛИЗАЦИЯ» (момент времени пересечения обнаруженным источником зоны контроля) после смены знака разностного сигнала Δn(t) и при выполнении условия max|dΔn(t)/dt|2 > max|dΔn(t)/dt|1.

Изобретение относится к иконике для создания систем визуализации в инфракрасном, ультрафиолетовом, рентгеновском и других участках спектра электромагнитных излучений.

Изобретение относится к обнаружению медленных нейтронов. Устройство обнаружения медленного нейтрона содержит первый преобразователь медленных нейтронов и второй преобразователь медленных нейтронов, выполненные с возможностью взаимодействия с падающими нейтронами и генерирования электронов, устройство умножения и считывания электронов, расположенное между первым преобразователем медленных нейтронов и вторым преобразователем медленных нейтронов и выполненное с возможностью умножения и считывания электронов, причем устройство умножения и считывания электронов содержит первый катодный проводной набор, второй катодный проводной набор и проводной набор считывающего электрода.

Группа изобретений относится к системам формирования изображений позитронно-эмиссионной томографии (PET). Детекторная матрица для системы формирования изображений содержит матрицу сцинтиллирующих кристаллов, при этом каждый кристалл включает в себя множество боковых поверхностей, причем по меньшей мере фрагмент по меньшей мере одной боковой поверхности сцинтиллирующего кристалла сконфигурирован лазерным травлением боковой поверхности, чтобы диффузно отражать свет обратно в по меньшей мере один кристалл; и матрицу фотодатчиков, оптически связанную с матрицей сцинтиллирующих кристаллов.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Группа изобретений относится к медицинской технике, а именно к средствам для обучения и/или прогнозирования данных при разработке плана лечения лучевой терапии. Система лучевой терапии для лечения целевого пациента, с помощью устройства лучевой терапии, выполненного с возможностью осуществлять лучевую терапию в соответствии с планом лечения, содержит устройство обработки данных для создания плана лечения, включающее память, в которой хранятся исполнимые компьютером инструкции, и процессорное устройство, коммуникативно соединенное с памятью, при этом исполняемые компьютером инструкции, при выполнении процессорным устройством, побуждают процессорное устройство осуществлять операции, включающие в себя получение обучающих данных, соотнесенных с прошлыми планами лечения, применяемыми для лечения выборочных пациентов, причем обучающие данные включают в себя наблюдения, соотнесённые с состоянием выборочных пациентов, полученные из медицинских данных изображений, и по меньшей мере один результат плана, указывающий результат, полученный из прошлого плана лечения, или параметр плана, указывающий расчетный параметр прошлого плана лечения, определение совместной плотности вероятности, указывающей вероятность того, что как по меньшей мере одно конкретное наблюдение, так и по меньшей мере один конкретный результат плана или параметр плана присутствуют в обучающих данных, вычисление условной вероятности на основании определенной совместной плотности вероятности, причем условная вероятность указывает вероятность того, что конкретный результат плана или параметр плана присутствует в обучающих данных, получение специфичных для пациента тестовых данных, соотнесенных с целевым пациентом, включающих в себя по меньшей мере одно специфичное для пациента наблюдение, соотнесенное с целевым пациентом и полученное из медицинских данных изображений, прогнозирование вероятности специфичного для пациента результата плана или параметра плана на основании условной вероятности и специфичного для пациента наблюдения, создание плана лечения, основанного на прогнозировании, и предписывание устройству лучевой терапии осуществлять лучевую терапию в соответствии с созданным планом лечения.

Группа изобретений относится к медицинской технике, а именно к средствам для обучения и/или прогнозирования данных при разработке плана лечения лучевой терапии. Система лучевой терапии для лечения целевого пациента, с помощью устройства лучевой терапии, выполненного с возможностью осуществлять лучевую терапию в соответствии с планом лечения, содержит устройство обработки данных для создания плана лечения, включающее память, в которой хранятся исполнимые компьютером инструкции, и процессорное устройство, коммуникативно соединенное с памятью, при этом исполняемые компьютером инструкции, при выполнении процессорным устройством, побуждают процессорное устройство осуществлять операции, включающие в себя получение обучающих данных, соотнесенных с прошлыми планами лечения, применяемыми для лечения выборочных пациентов, причем обучающие данные включают в себя наблюдения, соотнесённые с состоянием выборочных пациентов, полученные из медицинских данных изображений, и по меньшей мере один результат плана, указывающий результат, полученный из прошлого плана лечения, или параметр плана, указывающий расчетный параметр прошлого плана лечения, определение совместной плотности вероятности, указывающей вероятность того, что как по меньшей мере одно конкретное наблюдение, так и по меньшей мере один конкретный результат плана или параметр плана присутствуют в обучающих данных, вычисление условной вероятности на основании определенной совместной плотности вероятности, причем условная вероятность указывает вероятность того, что конкретный результат плана или параметр плана присутствует в обучающих данных, получение специфичных для пациента тестовых данных, соотнесенных с целевым пациентом, включающих в себя по меньшей мере одно специфичное для пациента наблюдение, соотнесенное с целевым пациентом и полученное из медицинских данных изображений, прогнозирование вероятности специфичного для пациента результата плана или параметра плана на основании условной вероятности и специфичного для пациента наблюдения, создание плана лечения, основанного на прогнозировании, и предписывание устройству лучевой терапии осуществлять лучевую терапию в соответствии с созданным планом лечения.

Использование: для нейтронозахватной терапии. Сущность изобретения заключается в том, что элемент для формирования пучка, применяемый в нейтронозахватной терапии, содержит вход для пучка, мишень, замедлитель, примыкающий к указанной мишени, отражатель, окружающий указанный замедлитель снаружи, поглотитель тепловых нейтронов, примыкающий к указанному замедлителю, а также защитный экран от излучения и выход для пучка, выполненные в указанном элементе для формирования пучка; при этом мишень и пучок протонов, идущий от входа для пучка, вызывают ядерную реакцию для получения нейтронов; нейтроны образуют пучки нейтронов, которые определяют основную ось; замедлитель замедляет нейтроны, выделенные из мишени, до диапазона энергии надтепловых нейтронов; материал замедлителя получен из MgF2, или содержит MgF2, и смеси, содержащей Li, составляющей 0,1-5% по весу от MgF2, при этом из материала замедлителя в виде порошка или порошковой заготовки с помощью технологии спекания порошков посредством устройства для спекания порошков получен блок; отражатель отражает нейтроны, отклонившиеся от основной оси, обратно к основной оси для повышения интенсивности пучка надтепловых нейтронов; поглотитель тепловых нейтронов предназначен для поглощения тепловых нейтронов с целью предотвращения воздействия чрезмерных доз на поверхностные нормальные ткани во время терапии; защитный экран от излучения предназначен для предотвращения утечки нейтронов и фотонов с целью уменьшения дозы для нормальных тканей в необлучаемых зонах.

Группа изобретений относится к медицинской технике, а именно к средствам контроля лечения лучевой терапией. Способ контроля персонализированного лечения пациента лучевой терапией включает прием медицинских изображений одного пациента, создание персонализированной трехмерной модели части одного пациента на основании только указанных медицинских изображений, установку дозиметра в персонализированную трехмерную модель пациента, причем дозиметр выполнен с возможностью измерять воздействие излучения, сканирование персонализированной трехмерной модели пациента, содержащей дозиметр, чтобы предоставлять по меньшей мере одно считываемое изображение, представляющее персонализированную трехмерную модель пациента, облучение по меньшей мере части персонализированной трехмерной модели пациента, которая содержит дозиметр, в соответствии с планом персонализированного лечения пациента лучевой терапией для получения облученной персонализированной трехмерной модели пациента, сканирование облученной персонализированной трехмерной модели пациента, чтобы предоставлять по меньшей мере одно считываемое изображение после облучения, представляющее распределение дозы облучения внутри облученной персонализированной трехмерной модели пациента, при этом по меньшей мере одно считываемое изображение после облучения является трехмерным изображением.

Группа изобретений относится к медицинской технике, а именно к средствам контроля лечения лучевой терапией. Способ контроля персонализированного лечения пациента лучевой терапией включает прием медицинских изображений одного пациента, создание персонализированной трехмерной модели части одного пациента на основании только указанных медицинских изображений, установку дозиметра в персонализированную трехмерную модель пациента, причем дозиметр выполнен с возможностью измерять воздействие излучения, сканирование персонализированной трехмерной модели пациента, содержащей дозиметр, чтобы предоставлять по меньшей мере одно считываемое изображение, представляющее персонализированную трехмерную модель пациента, облучение по меньшей мере части персонализированной трехмерной модели пациента, которая содержит дозиметр, в соответствии с планом персонализированного лечения пациента лучевой терапией для получения облученной персонализированной трехмерной модели пациента, сканирование облученной персонализированной трехмерной модели пациента, чтобы предоставлять по меньшей мере одно считываемое изображение после облучения, представляющее распределение дозы облучения внутри облученной персонализированной трехмерной модели пациента, при этом по меньшей мере одно считываемое изображение после облучения является трехмерным изображением.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения рака лёгкого. Для этого осуществляют эндоскопическую фотодинамическую терапию (ФДТ).
Изобретение относится к медицине, а именно к онкоурологии и радиологии, и может быть использовано для лечения почечно-клеточного рака (ПКР) с диссеминацией в лимфатические узлы.

Изобретение относится к медицинской технике, а именно к области направления заряженных частиц в целевую зону в пределах исследуемого субъекта, причем частицы наводят с использованием магнитно-резонансной томографии.

Изобретение относится к медицине, а именно к радиологии и медицинской биофизике, и может быть использовано для реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком. Размещают радиохромную пленку на поверхности тела пациента. Проводят протонную терапию очага поражения. В режиме интерактивного просмотра принятого плана лечения с предписанной дозой, просматривая по слоям томограмму пациента с одной линией постоянной дозы, значение которой изменяют в процессе просмотра, определяют максимальную дозу на поверхности в месте входа сканирующего пучка. Далее в процессе проведения терапии измеряют максимальную дозу на поверхности в том же месте радиохромной пленкой, закрепленной на теле пациента. После чего проводят реконструкцию подводимой дозы в очаге поражения по формуле: где - расчетная максимальная доза на поверхности, - измеренная максимальная доза на поверхности, - предписанная доза. При этом устанавливают перекрестие секущих плоскостей на краю изображения поверхности, по крайней мере, в коронарном и сагиттальном сечениях в месте входа сканирующего пучка. Изменяют значения указателя таким образом, чтобы какая-то часть линии изодозы, по крайней мере, в коронарном и сагиттальном сечениях проходила по краю изображения поверхности в месте входа сканирующего пучка. Сканируют облученную пленку, используя устройство-сканер, и получают изображение оптической плотности. Изображение оптической плотности обрабатывают пакетом программ обработки для получения изображения, которое содержит значение пикселя с максимальной дозой на поверхности в месте входа сканирующего пучка, значение которой находят в титуле по указателю. Способ обеспечивает быстрый, сразу после облучения, реконструктивный контроль подводимой дозы в очаг поражения и оценку возможных реакций со стороны кожных покровов путем расчета подводимой дозы с использованием значений предписанной дозы, а также расчетной и измеренной максимальных доз на поверхности. 4 з.п. ф-лы, 2 ил., 1 пр.

Наверх