Фильтрационная установка для физического моделирования процессов вытеснения нефти

Изобретение относится к исследованию фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного месторождения. Установка содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта. Длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта. Секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси. На торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента. Бандаж выполнен в виде электрического ленточного нагревателя. Повышается точность моделирования гидродинамических пластовых условий с максимальным приближением к условиям натурального объекта, повышается точность оценки коэффициентов вытеснения нефти. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области исследования фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного месторождения.

Известен стенд для исследования процессов фильтрации углеводородных флюидов, включающий насыпную модель пласта, помещенную в термостатирующий блок, датчики давления и температуры, систему заполнения исследуемыми газами и жидкостями, блок создания рабочего давления и блок разделительных цилиндров, регулятор давления, газовый счетчик, вакуумный насос, систему регулирования и контроля параметров процессов фильтрации, а также детонационную камеру сгорания для исследования результатов теплового и ударно-волнового воздействия на модели нефтяных и газовых пластов (RU 72347, 2007).

Известный стенд позволяет моделировать процессы фильтрации нефтяных и газоконденсатных смесей в одномерной модели пласта, а так же тепловые и волновые методы воздействия на пласты, содержащие углеводородные флюиды.

Недостатком известного решения является узкий диапазон проводимых исследований, не рассчитанный на фильтрационные эксперименты, моделирующие процесс заводнения углеводородного месторождения.

Известен стенд для определения коэффициента вытеснения нефти водой в лабораторных условиях с использованием в качестве пористой среды для проведения фильтрационных экспериментов испытания единичный или составной образец породы правильной геометрической формы, приготовленный из керна изучаемого пласта и ориентированный параллельно напластованию, включающий кернодержатель, жидкостные контейнеры для вытесняющих реагентов, мерные бюретки для контроля вытесненной нефти, воздушный термостат для поддержания заданной температуры в процессе испытаний, манометры для измерения перепада давления на фиксированных участках образца в процессе испытаний (ОСТ 39-195-86 «Нефть. Метод определения коэффициента вытеснения нефти водой в лабораторных условиях»).

Недостатком известного стенда является низкие точность моделирования пластовых условий и достоверность соответствия полученных экспериментальных данных пластовым характеристикам, поскольку в процессе отбора и подготовки керна к проведению исследований происходит существенной изменение его важнейшей и определяющей характеристики - поверхностных свойств. Кроме того, используемые для исследования образцы породы керна имеют ограниченный размер, что также отражается на точности оценки коэффициента вытеснения нефти.

Из известных решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является установка для исследования и моделирования фильтрационных процессов, включающая насос для подачи рабочей жидкости в кернодержатель с секционной моделью пласта, состоящей из равных по длине секций, каждая из которых выполнена как внешняя полая цилиндрическая камера, выполненная с кольцевыми буртами на концах, по периметру которых размещены сквозные отверстия, на входной и выходной секциях модели пласта установлены фланцы с центральными капиллярными каналами, в верхней части каждой секции модели пласта установлены штуцера с датчиками давления и температуры, соединенные общим датчиком давления и температуры, внутри каждой секции модели пласта расположена манжета с возможностью размещения в ней образца керна, выполненная по длине с зазором большим, чем внешняя полая цилиндрическая камера, с кольцевыми буртами на концах для соединения секций модели пласта между собой посредством вставки бурта манжеты во внутреннее отверстие втулки, выполненной с верхним отверстием для установки в него датчиков давления и температуры (RU 160842, 2015).

Недостатком известного решения является низкая точность физического моделирования с целью исследования характера взаимодействия несмешивающихся жидкостей и оценки коэффициентов вытеснения, что обусловлено ограничением выбора длины секций модели пласта, поскольку конструирование секционной модели большой длины, например, длиной 2 метра и более, и состоящей из кернового материала, отобранного из скважины вдоль напластования, не представляется технически возможным.

Кроме того, структура пористой среды образца реального керна, как правило, сложна и индивидуальна для каждого образца и в значительной мере влияет на конечный результат эксперимента, что обуславливает необходимость выполнения нескольких одинаковых опытов для получения достоверного результата.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является повышение точности моделирования гидродинамических пластовых условий с максимальным приближением к условиях натурального объекта и, соответственно, повышение точности оценки коэффициентов вытеснения нефти. Указанная техническая проблема решается тем, что фильтрационная установка для физического моделирования процессов вытеснения нефти содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта, при этом длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта, секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси, а на торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента.

В частном случае исполнения термостатирующий бандаж может быть выполнен в виде электрического ленточного нагревателя.

Достигаемый технический результат заключается в обеспечении совпадения безразмерных критериев подобия в эксперименте и натуре, в том числе размера зоны смеси вытесняющего и вытесняемого агентов при использовании широкого спектра вытесняющих агентов.

Сущность предлагаемой установки поясняется чертежами, где на фиг. 1 приведена принципиальная схема предлагаемой установки, на фиг. 2 показана единичная секция насыпной модели пласта.

Установка включает последовательно соединенные идентичные секции кернодержателя 1 насыпной модели пласта, соединенные между собой пустотелыми переходниками 2, диаметр которых выбирают из условия обеспечения сохранения линейной скорости фильтрации с учетом формирования зоны смеси. Рабочий агент поступает в модель пласта из емкости 3 при помощи двухплунжерного насоса 4. Отфильтрованная жидкость собирается в мерную емкость 5, позволяющую учитывать объем отфильтрованного флюида. Газовый демпфер 6, подключенный к баллону 7, создает противодавление в системе. Обвязка баллона позволяет проводить исследования по определению абсолютной проницаемости модели. Установка оснащена задвижками 8 и регулируемой задвижкой 9, установленной на выходном канале 10 последней секции кернодержателя 1.

Каждая секция модели 1 представляет собой трубу 11 (фиг. 2) из нержавеющей стали с внутренней винтовой нарезкой, закрытую с двух сторон крышками 12, которые при помощи фиксаторов 13 крепят на входе и выходе трубы 11 сеточные фильтры 14.

Фильтры 14 предназначены для предотвращения выноса фракций песка из полости трубы 11.

Каждая секция 1 кернодержателя снабжена термостатирующим бандажом в виде ленточного нагревателя 15, интенсивность нагрева которого регулируется трансформатором 16, подключаемым к электросети. На входном 17, выходном 10 каналах и между секциями 1 установлены датчики дифференциального давления 18 и температуры 19.

Перед запуском установки в работу предварительно рассчитывают количество идентичных секций, отвечающих условию обеспечения подобия насыпной модели пласта натурным (реальным) условиям.

Показателем подобия являются безразмерные критерии П1 и П2.

Для обеспечения подобия необходимо выполнение соотношений:

и

где: m - пористость, К - проницаемость, σ - межфазное натяжение.

Так для гидрофильных несцементированных песков, как известно, приближенное моделирование реализуется при выполнении следующих условий:

П1≤0.5 П2≥0.5 106

Преобразование этих условий позволило определить минимальную допустимую длину составной секционной насыпной модели:

где:

k - проницаемость образца, Д;

m - пористость, %;

Lmin - длина составной модели, см.

После подбора длины модели осуществляют расчет скорости фильтрации флюида в единичной секции образца при требуемых скоростях нагнетания.

Длина единичной секции должна удовлетворять условию возможности осуществления формирования пористой среды заданных параметров, с одной стороны, и минимизации количества секций, с другой.

Расстояние между секциями выбирают минимально возможным.

Зная скорость фильтрации и расстояние между секциями 1 насыпной модели, подбирается диаметр пустотелого переходника, обеспечивающий сохранение линейной скорости фильтрации потока вытесняющего агента с учетом формирования зоны смеси.

Подготовку каждой секции насыпной модели осуществляют до монтирования всей установки следующим образом.

Производят набивку каждой секции 1 кернодержателя заранее подготовленным материалом - молотым промытым песком, помол выбирают исходя из требуемой конечной проницаемости модели. Затем на сухой модели определяют абсолютную проницаемость по газу для каждой секции путем пропускания сквозь нее газа из баллона 7. После определения газопроницаемости заполненная песком секция 1 взвешивается и вакуумируется в течение 5-6 часов. После удаления воздуха, вход первой секции 1 соединяют с емкостью 3, наполненной водой заданной минерализации, и осуществляют насыщение пористой среды водой. При известной плотности воды находят поровый объем модели и вычисляют коэффициент открытой пористости каждой секции.

После выхода установки на стабильный расход воды рассчитывают коэффициент проницаемости водонасыщенной модели по воде при комнатной температуре.

Для создания нефте-, водонасыщенной пористой среды после насыщения водой каждый элемент пористой среды размещают вертикально. После чего при комнатной температуре через верхнее входное отверстие в секцию производится закачка углеводородной модельной жидкости (нефти, керосина и проч.) при перепаде давления не менее 2,0 МПа до тех пор, пока на выходе содержание воды в выходящей жидкости не станет практически равной нулю.

Количество вышедшей из модели воды замеряется, и определяется остаточная водонасыщенность модели (SwR). Затем определяется коэффициент фазовой проницаемости по нефти при остаточной воде. Таким образом, получают модель нефтенасыщенного пласта с остаточной водой.

Проведение испытаний на установке осуществляют следующим образом.

После подготовки каждой секции насыпной модели установка собирается и опрессовывается. При необходимости за несколько часов до эксперимента включается система термостатирования для достижения необходимых температурных значений. Установка считается полностью герметичной, если в течение часа отклонения манометра, фиксирующего давление опрессовки, остается неизменным.

Вытеснение нефти из нефте-, водонасыщенного образца производят путем подачи на входной канал 17 образца пористой среды 1 воды из емкости 3 с постоянной заданной скоростью, обеспечиваемой двухплунжерным насосом. Нагнетание при выбранной скорости проводят непрерывно до полного обводнения выходящей жидкости. Обводненность контролируют при помощи мерной емкости 5, установленной на выходе из установки. По текущим значениям вышедшей углеводородной фазы определяют накопленные значения коэффициента вытеснения нефти, в том числе в момент прорыва воды (появления первых следов водной фазы в выходящей продукции). После полного обводнения продукции (98%) необходимо остановить установку, опорожнить рабочую емкость 5 от остатков воды, наполнить иным вытесняющим агентом (водный раствор полиакриламида и проч. агенты, предусмотренные моделируемыми условиями) и повторить вышеописанный алгоритм.

В процессе вытеснения непрерывно фиксируют показания датчиков давления и температуры, в том числе в момент прорыва воды (появления первых следов водной фазы в выходящей продукции). На основании полученных в каждом эксперименте результатов рассчитывают коэффициент вытеснения нефти и строят графики зависимости текущего значения коэффициента вытеснения от относительного накопленного объема закачки.

Таким образом, предлагаемое техническое решение расширяет возможности исследований при моделировании процессов нефте- и газодобычи и может быть использовано при поиске оптимальных методов увеличения коэффициента извлечения жидких углеводородов.

Использование насыпной модели, сформированной предлагаемым образом, обеспечивает возможность сравнения полученных результатов в зависимости от объема закачки вытесняющего агента при заданной начальной проницаемости модели. При этом отпадает необходимость в проведении повторных опытов для повышения достоверности исследования.

1. Фильтрационная установка для физического моделирования процессов вытеснения нефти, характеризующаяся тем, что она содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта, при этом длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта, секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси, а на торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента.

2. Фильтрационная установка по п.1, отличающаяся тем, что термостатирующий бандаж выполнен в виде электрического ленточного нагревателя.



 

Похожие патенты:

Изобретение относится к горнодобывающей промышленности и может быть использовано для имитации проявления горного давления в выработках, закрепленных анкерной крепью.

Изобретение относится к исследованиям процесса деформации и может быть использовано для моделирования процесса деформирования уплотняемого грунта вокруг расширяющейся под давлением скважины, изучения взаимодействия уплотняемого грунта с вытесняемым его пластичным веществом, разработки уплотняющих веществ, тестирования технологий упрочнения грунтов.

Изобретение относится к моделированию сложных структур трещин в подземном пласте. Техническим результатом является упрощение исследования потоков флюида для многих типов сложных структур трещин.

Изобретение относится к научным моделям в геологии и предназначено для выявления зависимостей напряженно-деформированного состояния пластов, например угольных, от различных их геометрических и физических характеристик, условий залегания и технологий отработки.

Изобретение относится к горнодобывающей промышленности и может быть использовано для определения проявления горного давления в выработках закрепленных анкерной крепью.

Изобретение относится к испытательной технике, к области изучения геомеханических процессов путем физического моделирования на эквивалентных материалах. .

Изобретение относится к геофизическому анализу с целью оптимизации процесса бурения и, в частности, - к способу построения обратимой трехмерной гидростатической модели земли и ее применения с целью прогнозирования развития сверхгидростатического формационного давления перед бурением и в его и в процессе.

Изобретение относится к исследованиям процесса деформации и может быть использовано для моделирования процесса деформирования грунта вокруг расширяющейся под давлением скважины, например в строительстве.

Изобретение относится к моделированию в геологии. .

Изобретение относится к области геологии и касается способа выявления улучшенных коллекторских свойств высокоуглеродистых пород. Способ включает в себя отбор образцов керна из высокоуглеродистых пород, исследование образцов проб методом ИК-спектроскопии, получение ИК-спектров минеральной матрицы породы и сопоставление их с эталонными спектрами.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных и газовых залежей, при количественной интерпретации геофизических исследований скважин (ГИС), эксплуатации нефтяных месторождений.

Изобретение относится к способам и методам петрофизических и геохимических исследований коллекции керна нетрадиционного резервуара юрской высокоуглеродистой формации (ЮВУФ) и может быть использовано при определении линейных ресурсов нефти и газа, технически извлекаемых из ЮВУФ, с учетом их различной степени связанности с матрицей породы и заполнения сообщающихся и/или не сообщающихся пор.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для исследования и освоения пласта, а также для очистки призабойной части пласта и забоя скважины.

Изобретение относится к области исследования физических свойств горных пород и может быть использовано при разработке нефтяных месторождений. Способ заключается в том, что образцы керна, насыщенные керосином с остаточной водой, устанавливают в кернодержатель фильтрационной системы, создают заданные термобарические условия, прокачивают керосин в объеме 3–4 объемов пор образца, в передвижной обогревательной системе с помещенным в нее пробоотборником с пробой нефти создают термобарические условия, аналогичные установленным в кернодержателе, замещают керосин на нефть посредством подключения передвижной обогревательной системы в гидравлическую схему фильтрационной установки, определяют коэффициент проницаемости, устанавливают пластовую температуру, пластовое давление и горное давление, установку модернизируют путем подключения пробоотборника с передвижной обогревательной системой, в которую помещают пластовую пробу нефти, перед подключением в гидравлическую схему фильтрационной установки перемешивают её качанием в ручном режиме с контролем температуры и давления в пробоотборнике для максимальной гомогенизации флюида, начало процесса формирования твердых фаз парафинов и асфальтенов регистрируют по резкому уменьшению коэффициента проницаемости.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки неоднородного пласта сверхвязкой нефти в уплотненных и заглинизированных коллекторах, исключение неравномерности прогрева и прорыва теплоносителя в добывающую скважину.

В настоящем документе описаны многофазные расходомеры и связанные с ними способы. Устройство для измерения расхода содержит: впускной манифольд; выпускной манифольд; первый и второй каналы для потока, присоединенные между впускным и выпускным манифольдами; и анализатор для определения расхода текучей среды, протекающей через первый и второй каналы для потока, на основании параметра текучей среды, протекающей через первый канал для потока, причем параметр представляет собой перепад давления текучей среды, протекающей через первый канал для потока или плотность смеси текучей среды, протекающей через первый канал для потока, источник и детектор, соединенные с первым каналом для потока, причем анализатор использует полученные детектором значения для определения фазовой фракции текучей среды, протекающей через первый канал для потока, клапан для управления расходом текучей среды через второй канал для потока.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам разработки месторождений высоковязкой нефти или природного битума горизонтальными скважинами.

Изобретение относится к исследованию водосодержащих геологических структур. Представлен способ определения индексов структурного различия верхних зон заполнения Ордовикского известняка, согласно которому: сначала определяют три типа структур зоны заполнения, а именно структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения; затем определяют индексы различия в соответствии с тремя типами структур зоны заполнения, включающие: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка; затем соответственно определяют пороговые значения для каждого индекса в соответствии с различными водоупорными свойствами, соответствующими указанным трем структурам; причем индексы получают посредством нескольких этапов на основании расчета из заданных соотношений величин прорыва воды и коэффициента проницаемости для подземной скважины.

Изобретение направлено на повышение эффективности и оптимизацию геологоразведочных работ, особенно в условиях шельфа арктических и северных морей путем достижения технического результата, который заключается в снижении временных и финансовых затрат за счет определения гидродинамических параметров продуктивных нефтяных или газовых пластов с помощью приборов ГДК-ОПК, а также по данным ГИС.

Группа изобретений относится к нефтяной промышленности. Технический результат - увеличение охвата обрабатываемого пласта тепловым воздействием, сокращение сроков прогрева обрабатываемого пласта, снижение энергетических затрат на реализацию способа, увеличение коэффициента нефтеизвлечения. Способ разработки залежи сверхвязкой нефти и/или битума в уплотненных и заглинизированных коллекторах включает использование пары горизонтальных нагнетательной и добывающей скважин, горизонтальные участки которых размещены параллельно один над другим в вертикальной плоскости обрабатываемого пласта, спуск колонн насосно-компрессорных труб (НКТ) или безмуфтовых длинномерных труб (БДТ) колтюбинговой комбинированной установки, позволяющих вести одновременно закачку теплоносителя и отбор продукции, закачку теплоносителя, прогрев обрабатываемого пласта с созданием паровой камеры, отбор продукции через добывающую скважину и контроль технологических параметров пласта. Перед спуском колонны НКТ или БДТ определяют приемистость горизонтальной нагнетательной скважины и коэффициенты глинистости и карбонатности в породе обрабатываемого пласта. Выделяют интервал с приемистостью от 0,1 до 10 м3/сут на 100 м длины горизонтального ствола нагнетательной скважины и коэффициентом глинистости от 0,05 до 0,95 доли ед. Определяют длину и объем выделенного интервала. При длине выделенного интервала, равной длине горизонтальной части нагнетательной скважины, спускают колонну НКТ или БДТ выше 3-5 м от забоя горизонтальной нагнетательной скважины, через колонну НКТ или БДТ закачивают кислотный состав в горизонтальную нагнетательную скважину. При значении коэффициента карбонатности от 0 до 0,049 доли ед. кислотный состав включает, мас. доли: 24%-ную ингибированную соляную кислоту 0,33-0,50; 70%-ную фтористоводородную кислоту 0,04-,07; воду - остальное. При значении коэффициента карбонатности от 0,05 до 0,95 доли ед. кислотный состав включает, мас. доли: 24%-ную ингибированную соляную кислоту 0,33-0,50; воду - остальное. Объем кислотного состава определяют в зависимости от объема выделенного интервала. Продавливают кислотный состав 5%-ным по массе водным раствором хлорида калия в объеме колонны НКТ или БДТ. Поднимают колонну технологических НКТ или БДТ в вертикальную часть скважины, закрывают горизонтальную нагнетательную скважину на реагирование до 4-5 ч. Спускают колонну НКТ или БДТ выше 3-5 м от забоя и промывают горизонтальную нагнетательную скважину аэрированной жидкостью в объеме не менее закачанного кислотного состава до нейтрального значения водородного показателя рН выносимой жидкости. Далее производят закачку теплоносителя и отбор продукции. При длине выделенного интервала меньше длины горизонтальной части нагнетательной скважины колонну НКТ или БДТ устанавливают в середину выделенного интервала, осуществляют указанные выше операции, начиная от закачки кислотного состава до его продавки. Затем перемещают колонну НКТ или БДТ до середины следующего выделенного интервала и повторяют указанные операции. Обработку начинают с ближайшего к забою выделенного интервала. 2 н.п. ф-лы, 4 ил., 1 табл., 2 пр.
Наверх