Способ ремонта охлаждаемой лопатки из жаропрочного суперсплава турбины газотурбинного двигателя

Изобретение относится к способу ремонта охлаждаемых лопаток из жаропрочного суперсплава турбины газотурбинного двигателя. Способ включает предварительное удаление с поверхности пера лопатки теплозащитного покрытия, зачистку торца колодца пера лопатки от следов приработки, зачистку наружной и внутренней поверхности стенок колодца торца пера лопатки, установку и фиксацию лопатки в приспособлении, подачу соосно лазерному лучу потока металлического порошка, химический состав которого совпадает с материалом лопатки, наплавку торца колодца пера лопатки в среде защитного газа, термическую обработку в вакууме и контроль. Наплавку металлического порошка осуществляют лазерным лучом в импульсном режиме с амплитудной модуляцией импульса, при этом каждый модулированный импульс лазерного луча состоит из переднего фронта импульса с плотностью мощности для осуществления наплавки и заднего фронта импульса с плотностью мощности для сопутствующего подогрева зоны наплавки при температуре, равной 0,7÷0,8 температуры плавления жаропрочного суперсплава лопатки. При наплавке обеспечивают отношение диаметра пятна луча лазера к ширине наплавляемой поверхности 0,5…0,7. Кроме того, жаропрочным суперсплавом охлаждаемой лопатки является сплав ЖС32-ВИ, для наплавки используют металлический порошок из жаропрочного суперсплава ЖС32-ВИ с фракцией 40-80 мкм, защиту зоны наплавки осуществляют локально с расходом защитного газа 6-7 л/мин. Способ ремонта обеспечивает повышение качества ремонта лопаток из суперсплава и исключает образование трещин при лазерной импульсной наплавке. 3 з.п. ф-лы, 5 ил.

 

Изобретение относится к технологии ремонта охлаждаемых лопаток из жаропрочного суперсплава турбины газотурбинного двигателя с содержанием упрочняющей Y' фазы не менее 60% и может быть использовано в турбомашиностроении при восстановлении длины пера лопатки. Реализация данного способа позволяет обеспечить высокое качество восстановления деталей турбомашин методом импульсной лазерной наплавки с использованием присадочного материала, идентичному по химическому составу материалу лопатки.

Известен способ импульсной лазерной наплавки металлов (Патент RU №2502588, МПК В23К 26/34, публ. 27.12.2013) на любые трехмерные поверхности из металлических материалов, при котором осуществляют подачу присадочного материала в виде проволоки и воздействие на него и зону наплавки импульсным лазерным излучением. Осуществляют амплитудную модуляцию лазерного излучения каждого импульса. Наплавку металла производят в защитной среде из инертных газов, а в качестве инертных газов используют аргон и гелий. В результате обеспечивается снижение скорости самоохлаждения и темпа деформации наплавленного слоя металла до уровня ниже критического.

Недостаток способа заключается в том, что присадочный материал используют в виде проволоки. Известно, что присадочный материал для жаропрочных суперсплавов с содержанием упрочняющей Y' фазы более 60% выпускается только в виде порошка.

Известен также способ сварки заготовок из высокожаропрочных суперсплавов с особой массовой скоростью подачи присадочного материала (Патент RU №2510994, МПК В23К 26/34, публ. 10.04.2014), при котором создают с помощью лазерного источника тепла зоны подвода тепла на поверхности заготовки. Подают с помощью устройства сварочный присадочный материал в зону подвода тепла. Подачу сварочного присадочного материала осуществляют с массовой скоростью ≤350 мг/мин, а параметры сварки, такие как подаваемая мощность, скорость сварки, диаметр луча сварки, выбирают из условия обеспечения скорости охлаждения при кристаллизации материала, по меньшей мере, 8000 Кельвинов в секунду.

Недостаток способа заключается в использовании дополнительного устройства подачи присадочного материала, а также данный способ не обеспечивает качественный ремонт лопаток из материала с содержанием упрочняющей Y' фазы не менее 60%, так как параметры сварки обеспечивают скорость охлаждения при кристаллизации, по меньшей мере 8000 Кельвинов в секунду, при этом не исключается возможность трещинообразования в температурном интервале хрупкости материала в зоне сплавления и наплавленном валике.

Наиболее близким по техническому решению является способ восстановления поверхности монокристаллической или полученной направленной кристаллизацией металлической детали (Патент RU №2409708, МПК С30 В13/08, С30 В13/22, В23К 26/34, F01D 5/00, публ. 20.01.2011), принятый за наиболее близкий аналог (прототип) толщиной менее 2 мм, в котором на деталь направляют лазерный луч и подают поток металлического порошка той же природы, что и металлическая деталь, при этом лазерный луч имеет мощность «Р» и перемещается вдоль детали со скоростью «V», в котором луч лазера и поток порошка подают на деталь соосно и отношение P/V находится в определенном диапазоне. Наплавку осуществляют в приспособлении коробчатого типа, внутренний объем которого заполняют аргоном для создания нейтральной атмосферы. Недостаток способа заключается в использовании дополнительного устройства защиты зоны наплавки и охлаждения лопатки при формировании каждого последующего слоя наплавки на температуру менее 600°, что ведет к снижению производительности.

Известно, что при сварке жаропрочные никелевые сплавы с содержанием У фазы 45 -60% и более, относятся к сплавам с высокой склонностью образования горячих и термических трещин, обусловленных высоким уровнем сварочных и объемных напряжений, образующихся при кристаллизации металла шва и охлаждения околошовной зоны. К таким сплавам относится, например, высоколегированный никелевый сплав ЖС32-ВИ, с содержанием Y' фазы 62-64%. При сварке технологическая прочность в процессе кристаллизации металла шва определяется температурным интервалом хрупкости металла (ТИХ), его пластичностью и темпом нарастания деформации в ТИХ, который в свою очередь зависит от скорости охлаждения.

Для повышения технологической прочности при лазерной сварке необходимо уменьшить скорость охлаждения металла шва. Технологическим приемом предупреждения образования горячих трещин может быть предварительный или сопутствующий подогрев зоны сварки, снижающий темп нарастания деформаций в ТИХ ниже критического.

Технической задачей заявляемого изобретения является повышение качества ремонта лопаток из жаропрочного суперсплава.

Поставленная задача достигается за счет того, что в способе ремонта охлаждаемой лопатки из жаропрочного суперсплава турбины газотурбинного двигателя, включающий предварительное удаление с поверхности пера лопатки теплозащитного покрытия, зачистку торца колодца пера лопатки от следов приработки, зачистку наружной и внутренней поверхности стенок колодца торца пера лопатки, установку и фиксацию лопатки в приспособлении, подачу соосно лазерному лучу потока металлического порошка, химический состав которого совпадает с материалом лопатки, наплавку металлического порошка на торец колодца пера лопатки в среде защитного газа, термическую обработку в вакууме и контроль, согласно изобретению, наплавку металлического порошка осуществляют лазерным лучом в импульсном режиме с амплитудной модуляцией импульса с плотностью мощности, в которой каждый модулированный импульс лазерного луча состоит из переднего фронта импульса с плотностью мощности для осуществления наплавки, и заднего фронта импульса с плотностью мощности для сопутствующего подогрева зоны наплавки при температуре, равной 0,7-10,8 температуры плавления жаропрочного суперсплава лопатки, при этом обеспечивают отношение диаметра пятна луча лазера к ширине наплавляемой поверхности 0,5…0,7.

Кроме того, согласно изобретению, жаропрочным суперсплавом охлаждаемой лопатки является сплав ЖС32-ВИ.

Кроме того, согласно изобретению, металлическим порошком для наплавки является жаропрочный суперсплав ЖС32-ВИ в виде порошка фракцией 40-80 мкм.

Кроме того, согласно изобретению, защиту зоны наплавки осуществляют защитным газом локально, с расходом 6-7 л/мин.

В отличие от прототипа, проводят наплавку металлического порошка лазерным лучом в импульсном режиме с периодическим воздействием каждого модулированного импульса, при этом каждый модулированный импульс лазерного луча состоит из переднего фронта импульса Р1 с плотностью мощности, которым осуществляют наплавку присадочного материала, и заднего фронта импульса Р2 с плотностью мощности, необходимой для сопутствующего подогрева зоны наплавки до температуры равной 0,7÷0,8 температуры плавления жаропрочного суперсплава лопатки, при этом отношение диаметра пятна луча лазера к ширине наплавляемой поверхности составляет 0,5…0,7, что в совокупности с сопутствующим подогревом позволяет снизить скорость охлаждения и темп деформации наплавленного металла до уровня ниже критического, что исключает образование горячих трещин, повышает качество ремонта охлаждаемой лопатки. Кроме того, согласно изобретению, жаропрочным суперсплавом охлаждаемой лопатки является сплав ЖС32-ВИ, металлическим порошком является жаропрочный суперсплав ЖС32-ВИ в виде порошка фракцией 40-80 мкм, защиту зоны наплавки осуществляют защитным газом локально, с расходом 6-7 л/мин, что обеспечивает качественную защиту зоны наплавки лопаток.

На фиг. 1 - представлена охлаждаемая лопатка из жаропрочного суперсплава турбины газотурбинного двигателя.

На фиг. 2 - представлен разрез верхней части пера охлаждаемой лопатки турбины газотурбинного двигателя.

На фиг. 3 - представлена схема наплавки торца колодца пера охлаждаемой лопатки турбины газотурбинного двигателя.

На фиг. 4 - представлен модулированный импульс лазерного луча.

На фиг. 5 - представлено фото верхней части со стороны спинки пера охлаждаемой лопатки турбины газотурбинного двигателя с восстановленным торцом.

Способ осуществляется следующим образом. Предварительно удаляют с поверхности пера 2 охлаждаемой лопатки 1 теплозащитное покрытие, зачищают торец 3 пера 2 лопатки 1, зачищают наружную 4 и внутреннюю 5 поверхность стенок колодца (без позиции) пера 2 лопатки 1, на зачищенный торец 3 лопатки 1 подают соосно лазерному лучу 8 транспортирующим газом гелием металлический порошок 6 (присадочный материал), химический состав которого совпадает с материалом лопатки, наплавку осуществляют лазерным лучом 8 в импульсном режиме с амплитудной модуляцией импульса с плотностью мощности импульса, при этом каждый модулированный импульс лазерного луча состоит из переднего фронта импульса 10 (Р1) с плотностью мощности для наплавки присадочного материала и заднего фронта импульса 11 (Р2) с плотностью мощности для сопутствующего подогрева зоны наплавки до температуры равной 0,7÷0,8 температуры плавления основного материала, при этом отношение диаметра пятна луча лазера В к ширине наплавляемой поверхности С составляет 0,5…0,7.

Жаропрочным суперсплавом охлаждаемой лопатки является сплав ЖС32-ВИ, металлическим порошком является жаропрочный суперсплав ЖС32-ВИ в виде порошка фракцией 40-80 мкм, защиту зоны наплавки осуществляют защитным газом локально, с расходом 6-7 л/мин,

В процессе лазерной наплавки наплавленного слоя 12 с соосной лазерному лучу 8 подачей порошка 6, транспортирующий газ гелий формирует струю наплавляемого присадочного материала - металлического порошка 6, который переплавляется под воздействием лазерного луча 8 в среде защитного газа аргона 7.

Преимуществом такого способа подачи является независимость размеров нанесенного валика от направления наплавки. Количество наплавленных слоев 12 наносится в зависимости от степени износа торца охлаждаемой лопатки 1.

Таким образом, предлагаемый способ ремонта охлаждаемой лопатки из жаропрочного суперсплава турбины газотурбинного двигателя с вышеуказанными отличительными признаками в совокупности с известными признаками обеспечивает повышение качества ремонта лопаток из жаропрочного суперсплава за счет исключения образования трещин при лазерной импульсной наплавке.

1. Способ ремонта охлаждаемой лопатки из жаропрочного суперсплава турбины газотурбинного двигателя, включающий предварительное удаление с поверхности пера лопатки теплозащитного покрытия, зачистку торца колодца пера лопатки от следов приработки, зачистку наружной и внутренней поверхности стенок колодца торца пера лопатки, установку и фиксацию лопатки в приспособлении, подачу соосно лазерному лучу потока металлического порошка, химический состав которого совпадает с материалом лопатки, наплавку металлического порошка на торец колодца пера лопатки в среде защитного газа, термическую обработку в вакууме и контроль, отличающийся тем, что наплавку металлического порошка осуществляют лазерным лучом в импульсном режиме с амплитудной модуляцией импульса с плотностью мощности, в которой каждый модулированный импульс лазерного луча состоит из переднего фронта импульса с плотностью мощности для осуществления наплавки и заднего фронта импульса с плотностью мощности для сопутствующего подогрева зоны наплавки при температуре, равной 0,7÷0,8 температуры плавления жаропрочного суперсплава лопатки, при этом обеспечивают отношение диаметра пятна луча лазера к ширине наплавляемой поверхности 0,5…0,7.

2. Способ по п. 1, отличающийся тем, что жаропрочным суперсплавом охлаждаемой лопатки является сплав ЖС32-ВИ.

3. Способ по п. 1, отличающийся тем, что для наплавки используют металлический порошок из жаропрочного суперсплава ЖС32-ВИ с фракцией 40-80 мкм.

4. Способ по п. 1, отличающийся тем, что защиту зоны наплавки осуществляют локально с расходом защитного газа 6-7 л/мин.



 

Похожие патенты:

Изобретение относится к способу формирования функционально-градиентного покрытия селективной лазерной наплавкой. В фокус лазерного излучения подают порошковый материал по крайней мере из двух автономно работающих дозаторов, в одном из которых находится порошок с низкой микротвердостью (менее HRC30) и высоким коэффициентом термического расширения (КТР) (более 9*10-6 К-1), а в другом - с высокой микротвердостью (более HRC70) и низким КТР (менее 6*10-6 К-1).

Изобретение относится к способу плазменного нанесения наноструктурированного теплозащитного покрытия. Предварительно на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, что позволяет после излома установить давление плазмы с напыляемым веществом в пристеночной части насадка равным давлению в вакуумной камере.

Изобретение относится к технологии получения покрытий и может быть использовано в различных отраслях машиностроения при изготовлении или восстановлении деталей для придания поверхности повышенных характеристик сопротивления коррозии.

Группа изобретений относится к области транспорта. Способ изготовления тормозного диска, в котором фрикционный слой расположен в некоторых областях на основном корпусе тормозного диска.

Изобретение относится к области поверхностного упрочнения алюминиевых сплавов электровзрывным напылением, в частности к поверхностному упрочнению силумина системой Y2O3-Al, и может быть использовано при нанесении предлагаемым способом покрытий на детали и изделия, подверженные износу.

Изобретение относится к способу сверхзвуковой лазерной наплавки порошковых материалов и устройству, его реализующему, и может быть использовано при лазерной порошковой наплавке.

Изобретение может быть использовано в двигателях внутреннего сгорания. Блок цилиндров двигателя внутреннего сгорания содержит стенку ствола (12) цилиндра, способную удерживать поршень для выполнения поршнем возвратно-поступательного движения.

Изобретение относится к обработке и упрочнению поверхности вольфрамовой пластины, подвергающейся интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, в которых вольфрам используют в качестве материала первой стенки и пластин дивертора.

Изобретение относится к вакуумной установке для получения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали. Вакуумная установка содержит раму с установленной на ней вакуумной камерой.

Изобретение относится к области металловедения, а именно к химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к решению проблемы трения и износа, и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.

Изобретение относится к способу ремонта стенки вертикального резервуара, выполненного из стальных листов из низкоуглеродистых и низколегированных сталей, соединенных между собой сварными соединениями.

Изобретение относится к двигателестроению, в частности к восстановлению топливной аппаратуры дизельных двигателей внутреннего сгорания. В способе подготовительные операции заключаются в установке и фиксации топливопровода высокого давления в устройстве для высадки наконечника, а формирование наконечника происходит за счет обработки изношенного профиля наконечника формообразующим инструментом методом калибрующей чеканки в виде одиночного удара или серии ударов.

Изобретение относится к области ремонта зубьев зубчатых колес, используемых во вращающихся машинах большого размера. Способ ремонта, осуществляемый без демонтажа зубчатого колеса с машины (2), включает использование съемного устройства (1) для механической обработки, выполненного в виде рамы (11) с подвижной частью (13), на которой установлен режущий элемент (15), и зажимных элементов, выполненных с возможностью фиксации на зубчатом колесе (3), причем съемное устройство (1) подвешено с возможностью удержания на натянутом тросе (5), связанном со станиной вращающейся машины (2).
Изобретение может быть использовано при упрочнении и восстановлении лап культиваторов различного функционального назначения. Процесс упрочнения режущей части лап культиваторных происходит в два слоя.

Изобретение относится к области ремонта зубьев зубчатого колеса (3). Способ ремонта, осуществляемый без снятия зубчатого колеса с его опоры (2), включает использование устройства (1) для механической обработки, которое содержит раму (11) и подвижную часть (13), на которой установлен режущий элемент (15).

Изобретение относится к способу ремонта рельсов, согласно которому направленный на головку рельса газовый резак устанавливают с возможностью его  перемещения по дуге.

Изобретение относится к областям машиностроения и ремонта деталей машин и может быть использовано на машиностроительных и ремонтно-технических предприятиях. Способ включает восстановление отверстий блока цилиндров глухой алмазной разверткой на станке, наплавку поршней электродом из легированной стали в механизированном режиме на электроискровых установках с энергией разряда 0,9-1,8 Дж, подачей электрода 0,16-0,19 мм/об и частотой вращения поршня 8-12 об/мин, последующую шлифовку поршней на бесцентрошлифовальном станке до достижения зазора в паре поршень-блок цилиндров 40-45 мкм, а также электроискровое упрочнение сферической поверхности блока цилиндров электродом из оловянистой бронзы в ручном режиме на установках с энергией разряда 0,11-0,22 Дж и временем обработки 5,0-6,0 мин/см2 с последующей притиркой и полировкой совместно с распределителем.
Изобретение может быть использовано при восстановлении рабочих органов почвообрабатывающих машин, преимущественно долот глубокорыхлителей. Удаляют изношенную режуще-лезвийную часть долота, изготавливают накладную пластину из листовой рессорно-пружинной стали и приваривают ее к восстанавливаемому долоту.

Изобретение относится к роботизированному комплексу для ремонта дефектов сварных швов труб, изготовленных с использованием технологии лазерной сварки. Приводная транспортная тележка установлена с возможностью перемещения по направляющим и на ней установлены три робота со вспомогательным оборудованием.

Изобретение может быть использовано при выполнении ремонтных работ, в частности резервуаров из низкоуглеродистых и низколегированных сталей. Осуществляют разметку и вырезку в дефектной зоне технологического окна и установку листовой ремонтной вставки с зазором между свариваемыми кромками с ее фиксацией.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.
Наверх