Локальный вибропоглотитель



Локальный вибропоглотитель
Локальный вибропоглотитель
G10K11/00 - Способы и устройства для передачи, проведения или направления звука вообще; способы или устройства для защиты от воздействия шума или других акустических колебаний вообще или для их подавления (звукоизоляция для транспортных средств B60R 13/08; звукоизоляция для самолетов B64C 1/40; звукоизоляционные материалы см. в соответствующих подклассах, например C04B 26/00- C04B 38/00; уменьшение шума на верхнем строении путей E01B 19/00; поглощение передаваемого по воздуху шума с дорог или железнодорожных путей E01F 8/00; звукоизоляция, поглощение или отражение шума в строительных сооружениях E04B 1/74; акустика помещений E04B 1/99; звукоизоляция полов E04F 15/20; глушители шума и выхлопные устройства

Владельцы патента RU 2687002:

Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (RU)

Изобретение относится к области борьбы с вибрацией от воздействия на конструкции воздушного шума или динамических усилий, возникающих при работе шумящего и (или) виброактивного оборудования, используемого на транспортных средствах различного функционального назначения (суда, самолеты, автомобили т.д.), и решает задачу повышения эффективности локального вибропоглотителя за счет снижения уровней вибрации устройством на низких резонансных частотах демпфируемой конструкции. Для этого в локальном вибропоглотителе, включающем скрепленные между собой металлическую массу в виде металлической пластины и упругий слой из полимерной пленки между металлической пластиной и колеблющейся на частоте ƒ демпфируемой конструкцией, по изобретению металлическая пластина имеет толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции, длину , определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины . При этом геометрический центр пластины отстоит от точки с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ. Кроме того, в качестве полимерной пленки использована полимерная пленка из поливинилацетата, имеющая толщину от 0,2 мм до 1,5 мм. Предлагаемый локальный вибропоглотитель имеет высокую эффективность снижения уровней вибрации устройством на низких резонансных частотах демпфируемой конструкции с существенным расширением частотного диапазона высокой эффективности, что выгодно отличает его от прототипа. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области борьбы с вибрацией от воздействия на конструкции воздушного шума или динамических усилий, возникающих при работе шумящего и (или) виброактивного оборудования, используемого на транспортных средствах различного функционального назначения (суда, самолеты, автомобили и т.д.).

Известно большое количество средств уменьшения вибрации, наиболее распространенными из которых являются вибропоглощающие покрытия и локальные вибропоглотители. Подробное описание принципа действия и конструкции указанных средств приведено, см. например, А.С.Никифоров. Вибропоглощение на судах. Гл. 3 Вибропоглощающие покрытия для судовых конструкций, стр. 53-78 и Гл. 5 Прочие средства вибропоглощения. §17 Локальные вибропоглотители, стр. 87-95. Издательство "Судостроение", Ленинград, 1979 г.

Одним из наиболее распространенных типов вобропоглощающих покрытий является армированное вибропоглощающее покрытие (А.С. Никифоров. Акустическое проектирование судовых конструкций. §6.3 Средства вибропоглощения, стр. 158-161. Издательство "Судостроение", Ленинград, 1990 г.), представляющее собой диссипативный слой резиноподобного материала на который наносится армирующий слой из металла. Одним из недостатков армированного вибропоглощающего покрытия является большая масса, обусловленная как большими размерами покрытия в плане, так и его большой толщиной. Действительно, для повышения эффективности армированное вибропоглощающее покрытие наносят на всю или большую часть поверхности демпфируемой конструкции, а толщина покрытия превышает толщину демпфируемой конструкции в два и более раз.

Для минимизации массы и площади размещения вибропоглощающих устройств вместо армированных вибропоглощающих покрытий используют локальные вибропоглотители, представляющие собой груз (металлическую массу) и резиновый слой между грузом и демпфируемой конструкцией (см. там же).

Известно также техническое решение (US 2011/0012419 А1, 20.01.2011, параг. 0073-0084, фиг. 1-11), являющееся вибропоглотителем, направленным на гашение вибрации балансируемого колеса механического средства путем установки на колесо груза из металлической массы в виде металлической пластины, соединенной с колесом упругим слоем из полимерной пленки -прототип.

Недостатком прототипа-устройства является отсутствие эффективности снижения уровней вибрации устройством на низких резонансных частотах демпфируемой конструкции.

Задачей предполагаемого изобретения является повышение эффективности снижения уровней вибрации устройством на низких резонансных частотах демпфируемой конструкции.

Указанная задача решается благодаря тому, что в локальном вибропоглотителе, включающем скрепленные между собой металлическую массу в виде металлической пластины и упругий слой из полимерной пленки между металлической пластиной и колеблющейся на частоте ƒ демпфируемой конструкцией, по изобретению металлическая пластина имеет толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции, длину , определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины . При этом геометрический центр пластины отстоит от точки с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ.

Кроме того, в качестве полимерной пленки использована полимерная пленка из поливинилацетата, имеющая толщину от 0,2 мм до 1,5 мм.

Выполнение металлической пластины, имеющей толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции, длину металлической пластины, определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины , обеспечивает повышение эффективности локального вибропоглотителя за счет настройки низшей резонансной частоты изгибных колебаний металлической пластины на частоту ƒ вибрации демпфируемой конструкции. При этом из-за возникновения изгибных колебаний металлической пластины на частотах более высоких, чем ее низшая резонансная частота, расширяется частотный диапазон, в котором проявляется эффективность локального вибропоглотителя.

Размещение геометрического центра металлической пластины от точки с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ, повышает эффективность локального вибропоглотителя за счет увеличения потерь колебательной энергии в пленке при интенсивной вибрации демпфируемой конструкции на частоте ƒ.

Использование полимерной пленки из поливинилацетата толщиной от 0,2 мм до 1,5 мм способствует повышению эффективности локального вибропоглотителя за счет поглощения колебательной энергии в полимерной пленке при резонансных колебаниях металлической пластины и повышенных уровней вибрации демпфируемой конструкции на частоте ƒ.

Сущность изобретения поясняется рисунками, где на фиг. 1 представлен предлагаемый локальный вибропоглотитель на демпфируемой конструкции и на фиг. 2 - поперечное сечение по А-А локального виброгасителя на фиг. 1, установленного на демпфируемой конструкции.

Локальный вибропоглотитель содержит металлическую пластину 1, имеющую толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции 2, длину , определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины . Металлическая пластина 1 закреплена на демпфируемой конструкции 2, имеющей повышенные уровни вибрации на частоте ƒ с помощью полимерной пленки 3 из поливинилацетата толщиной от 0,2 мм до 1,5 мм (ТУ 4515-001-00203521-93) - "рекордсмена" по вибропоглощающей эффективности среди используемых материалов. Упомянутая полимерная пленка обладает самоклеющейся способностью и обеспечивает надежное крепление металлической пластины, имеющей малую массу, на демпфируемой конструкции.

Геометрический центр металлической пластины 1 расположен отстоящим от точки с повышенным уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции 2 на частоте ƒ.

Предлагаемый локальный вибропоглотитель работает следующим образом.

Демпфируемой конструкцией 2 может являться корпусная или внутрикорпусная конструкция транспортного средства, возбуждаемая воздушным шумом или динамическими усилиями со стороны работающего шумящего и (или) виброактивного механизма. Ею может быть, например, ограждающая конструкция помещения, в котором находится механизм, повышенные вибрации которой являются причиной превышающих нормы уровней вибрации и шума в соседних и более удаленных помещениях транспортного средства. Демпфируемой конструкцией могут являться также днищевая конструкция кормовой оконечности судна, возбуждаемая пульсационными давлениями со стороны гребного винта, или корпус виброактивного механизма, возбуждаемого соударениями движущихся элементов, являющиеся причиной возникновения повышенных вибрации и (или) шума транспортного средства.

Вибрационная энергия, введенная источником в демпфируемую конструкцию, распространяется на металлическую пластину через полимерную пленку 3. При толщине h металлической пластины 1, составляющей от 0,2 до 0,5 толщины демпфируемой конструкции 2, длине определяемой величиной от половины до одной длины изгибной волны в металлической пластине 1 на частоте ƒ, и ширине b, определяемой значением не менее 0,1 ее длины -6, в ней на частоте ƒ возникают резонансные колебания, которые совместно с вибрациями демпфируемой конструкции 2 на той же частоте воздействуют на полимерную пленку. Колебательный процесс в полимерной пленке сопровождается потерями вибрационной энергии из-за ее преобразования в тепло, а его интенсификация резонансными колебаниями металлической пластины приводит к увеличению вибропоглощения, что повышает эффективность локального вибропоглотителя. Потери колебательной энергии в полимерной пленке 3 возрастают и на резонансных частотах колебаний металлической пластины 1, превышающих частоту ƒ и совпадающих с более высокими, чем низшая, резонансными частотами изгибных колебаний металлической пластины 1. Это способствует расширению частотного диапазона эффективности локального вибропоглотителя.

При толщине h металлической пластины 1 меньшей, чем 0,2 часть толщины демпфируемой конструкции 2, уменьшается эффективность локального вибропоглотителя из-за его малой массы по отношению к массе демпфируемой конструкции. Увеличение толщины h металлической пластины больше 0,5 толщины демпфируемой конструкции приводит к необходимости увеличения длины пластины и массы локального вибропоглотителя.

При длине металлической пластины XI со значениями, меньшими чем половина длины изгибной волны и большими, чем длина изгибной волны в металлической пластине на частоте ƒ, ухудшается настройка низшей резонансной частоты ее изгибных колебаний на частоту ƒ вибрации демпфируемой конструкции 2, что приводит к уменьшению эффективности локального вибропоглотителя. При значениях b, меньших чем 0,1 ее длины , недопустимо уменьшается масса металлической пластины 1 в сравнении с массой демпфируемой конструкции 2, что приводит к уменьшению эффективности локального вибропоглотителя.

При толщине полимерной пленки из поливинилацетата 3 от 0,2 мм до 1,5 мм в ней создаются условия для наилучшего поглощения колебательной энергии за счет касательных напряжений, возникающих в пленке при воздействии на нее как демпфируемой конструкции 2, так и металлической пластины 1. При толщине пленки 3 менее 0,2 мм уменьшается толщина ее слоя, в котором происходит преобразование колебательной энергии в тепло касательными напряжениями и уменьшается эффективность локального вибропоглотителя. При толщине пленки более 1,5 мм ухудшается возбуждение металлической пластины 1 демпфируемой конструкцией 2 и уменьшается эффективность локального вибропоглотителя.

Выполнение условия, что геометрический центр металлической пластины 1 отстоит от точки с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции 2 на частоте ƒ, способствует наилучшему возбуждению металлической пластины 1 и полимерной пленки 3 и приводит к увеличению вибропоглощения в локальном вибропоглотителе, т.е. к росту его эффективности. При больших отстояниях геометрического центра металлической пластины 1 от точки с наибольшим уровнем вибрации демпфируемой конструкции 2 уменьшаются уровни колебаний металлической пластины 1 на частоте ƒ что приводит к снижению эффективности локального вибропоглотителя.

Измерения эффективности заявляемого изобретения проводились при установке локального вибропоглотителя на демпфируемую конструкцию с размерами в плане 0,522×0,371 м и толщиной 1,5⋅10-3 м. Низшая резонансная частота изгибных колебаний конструкции, на которой регистрировались повышенные уровни ее вибрации, составляла 80 Гц. Локальный вибропоглотитель с такой же низшей резонансной частотой изгибных колебаний металлической пластины имел толщину 0,6⋅10-3 м и длину =0,14 м, равную половине длины изгибной волны в металлической пластине на частоте 80 Гц и определяемую по формуле , где λизг - длина изгибной волны на частоте ƒ в металлической пластине толщиной h. Ширина пластины составляла 0,045 м. Толщина полимерной пленки из поливинилацетата составляла 10-3 м. Масса локального вибропоглотителя составляла 1,3% от массы демпфируемой конструкции. Наибольший уровень вибрации демпфируемой конструкции на частоте 80 Гц был зарегистрирован в ее геометрическом центре. Геометрический центр локального вибропоглотителя совмещался с геометрическим центром демпфируемой конструкции. При установке локального вибропоглотителя было достигнуто уменьшение уровня вибрации демпфируемой конструкции на частоте ƒ=80 Гц на величину 19 дБ (~10 раз). Такой же эффект на этой частоте имел прототип с массой 8% от массы демпфируемой конструкции, т.е. в 6 раз большей, чем у локального вибропоглотителя. Эффективность прототипа с такой же массой как у испытанного локального вибропоглотителя отсутствовала.

Локальный вибропоглотитель уменьшил на 8-10 дБ (~2,5-3 раза) уровни вибрации демпфируемой конструкции также на ее более высоких резонансных частотах (129 Гц, 174 Гц, 201 Гц, 285 Гц и т.д.), где эффект от установки прототипа отсутствовал.

Предлагаемый локальный вибропоглотитель имеет высокую эффективность снижения уровней вибрации устройством на низких резонансных частотах демпфируемой конструкции с существенным расширением частотного диапазона высокой эффективности, что выгодно отличает его от прототипа.

1. Локальный вибропоглотитель, включающий скрепленные между собой металлическую массу в виде металлической пластины и упругий слой из полимерной пленки между металлической пластиной и колеблющейся на частоте ƒ демпфируемой конструкцией, отличающийся тем, что металлическая пластина имеет толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции, длину , определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины , при этом геометрический центр пластины отстоит от точки с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ.

2. Локальный вибропоглотитель по п. 1, отличающийся тем, что в качестве полимерной пленки использована полимерная пленка из поливинилацетата, имеющая толщину от 0,2 мм до 1,5 мм.



 

Похожие патенты:

Изобретение относится к области улучшения акустических условий и уровня освещенности помещений. Звукорассеивающая конструкция выполнена в форме параллелепипеда.

Изобретение относится к акустическому метаматериалу, содержащему ячейки для цифровой обработки входящего звукового волнового сигнала и для генерирования соответствующего ответного звукового волнового сигнала в зависимости от частоты и фазы входящего звукового волнового сигнала для генерирования общего ответного звукового волнового сигнала, который при комбинировании с входящим звуковым волновым сигналом модифицирует входящий звуковой волновой сигнал.

Изобретение относится к ультразвуковому расходомеру для измерения расхода текучей среды. Ультразвуковой расходомер для измерения расхода текучей среды (1) содержит измерительную трубку (2) и ультразвуковой преобразователь (3), причем измерительная трубка (2) имеет преобразовательную камеру (4), которая представляет собой выемку, находящуюся вне поперечного сечения потока в измерительной трубке (2), и генерирует завихрения в потоке текучей среды (1), причем для ультразвукового преобразователя (3) предусмотрен контакт с текучей средой (1) в преобразовательной камере (4) измерительной трубки (2), и ультразвуковой преобразователь (3) имеет корпус (5) преобразователя с ультразвуковым окном (8) и преобразовательный элемент (6), причем на направленной внутрь измерительной трубки (2) торцевой стороне (7) корпуса (5) преобразователя, у ультразвукового окна (8) корпуса (5) преобразователя предусмотрен цилиндрический экран (9), выполненный трубообразным и предназначенный для экранирования пути распространения ультразвуковых сигналов от завихрений, возникающих в потоке текучей среды.

Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к измерительному устройству и способу определения скорости потока текучей среды, текущей в трубопроводе. Измерительное устройство (10) для определения скорости потока текучей среды (12), текущей в трубопроводе (14), посредством по меньшей мере одного ультразвукового преобразователя (18а-b), размещенного снаружи на стенке (22) трубопровода и имеющего колебательный элемент (34), соединенный с участком (32) стенки (22) трубопровода, действующим в качестве колеблемой мембраны ультразвукового преобразователя (18а-b), имеет карман (30), размещенный снаружи в трубопроводе (14), при этом нижняя часть кармана образует мембрану (32), причем между мембраной (32) и колебательным элементом (34) расположен соединительный элемент (36), поперечное сечение которого меньше поперечного сечения колебательного элемента (34).

Изобретение относится к средствам снижения шума выхлопа пневматических систем. Глушитель содержит корпус цилиндрической формы с полостью, выполненный из пористого материала, и связанную с ним присоединительную арматуру.

Изобретение относится к способу звукоизоляции оборудования со средствами широкополосного шумоглушения. Способ заключается в том, что звукоизолирующее ограждение устанавливают на перекрытии здания на виброизолирующих опорах, выполненных из упругого материала.

Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения. Звукоизолирующее ограждение технологического оборудования изготовляют в форме прямоугольного параллелепипеда, охватывающего технологическое оборудование.

Изобретение относится к гидрофизике, геофизике и радиофизике. Сущность: способ гидроакустической томографии полей атмосферы, океана и земной коры различной физической природы в морской среде, включающий в себя формирование низкочастотного излучающего, а также приемного трактов измерительной системы с их акустическими преобразователями, размещение акустических преобразователей на противоположных границах контролируемой среды, озвучивание среды низкочастотными просветными сигналами стабилизированной частоты и формирование в ней рабочей зоны нелинейного взаимодействия и параметрического преобразования акустических просветных и измеряемых информационных волн, прием преобразованных просветных волн, усиление их в полосе нелинейного преобразования, узкополосный спектральный анализ и выделение из боковых полос спектров дискретных составляющих измеряемых информационных волн.

Использование: гидрофизика, геофизика и радиофизика. Сущность изобретения: способ параметрического приема волн различной физической природы источников атмосферы, океана и земной коры в морской среде включает в себя пространственно-разнесенные по контролируемой акватории на десятки-сотни километров излучающие и приемные акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования акустических просветных и измеряемых информационных волн, соединенные с преобразователями, соответственно, излучающий тракт формирования, усиления и излучения сигналов подсветки среды, а также тракт приема усиления, спектрального анализа нелинейно преобразованных просветных сигналов, выделения в спектрах верхней и (или) нижней боковых полос, определение и регистрации информационных сигналов, отличается тем, что рабочую зону нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн формируют как многолучевую пространственно-развитую просветную параметрическую антенну, соизмеримую с протяженностью контролируемой акватории, для чего излучающий преобразователь располагают в центре акватории и включают в него три всенаправленных блока и устанавливают их на оси ниже и выше оси подводного звукового канала (ПЗК), а приемный преобразователь формируют аналогично излучающему преобразователю из трех одинаковых блоков, которые располагают по кругу или периметру на противоположной границе акватории и размещают их относительно ПЗК аналогично излучающим блокам, при этом каждый приемный блок формируют из трех одиночных гидрофонов, которые размещают в вертикальной плоскости по равнобедренным треугольникам, а их вершины направляют в сторону излучающих преобразователей, за счет этого совместно с излучающими преобразователями формируют просветную многолучевую параметрическую антенну, при этом в излучающий тракт измерительной системы включают последовательно соединенные блоки: звукового генератора стабилизированной частоты, усилителя мощности, трехканального блока согласования выхода усилителя с подводными кабелями и далее с излучающими акустическими преобразователями, а приемный тракт измерительной системы формируют как многоканальный и многофункциональный, который включает один канал анализа для выделения информационных сигналов, содержащий последовательно соединенные блоки: полосового усилителя, преобразователя временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров и функционально связанного с ним регистратора (рекордера), а также три канала измерения функций корреляции между средним и крайними гидрофонами приемных блоков, далее функций их взаимной корреляции для последующего измерения углов прихода многолучевых сигналов «сверху и снизу» по направлениям сформированных в вертикальной плоскости просветных параметрических антенн для каждого приемного блока, при этом в каждый из трех каналов корреляционного анализа включают последовательно соединенные: полосовые усилители, два параллельных блока измерения корреляционных функций сигналов между центральным и крайними гидрофонами приемных блоков, далее блоки измерения функций взаимной корреляции, выходы которых соединяют с общим блоком регистратора (рекордером), а также с блоком вычисления траектории лучей, как просветных параметрических антенн, и точек их пересечения на акватории (ЭВМ), при этом одиночные гидрофоны каждого приемного блока посредством кабелей через блок переключения каналов соединяют с многоканальным приемным трактом измерительной системы.

Балансировочное устройство для двигателя внутреннего сгорания включает в себя коленчатый вал и балансировочный вал. Коленчатый вал включает в себя эксцентриковый груз коленчатого вала.

Изобретение относится к области двигателестроения, в частности к поршневым двигателям внутреннего сгорания. .

Изобретение относится к машиностроению, в частности к измерительной технике, и может быть использовано для динамической балансировки деталей машин. .

Изобретение относится к машиностроению, в частности к динамической балансировке. .

Изобретение относится к машиностроению, в частности к поршневым двигателям с кривошипами коленчатого вала, расположенными в одной плоскости. .

Изобретение относится к машиностроению и может быть использовано в приводах машин. .

Изобретение относится к машиностроению и может быть использовано в приводах машин. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для снижения уровня вибрации установки электроцентробежного насоса (УЭЦН) и поглощения колебаний подъемной колонны насосно-компрессорных труб (ПКНКТ).
Наверх