Органосиликатная композиция для защитных электроизоляционных покрытий

Изобретение относится к лакокрасочным материалам для получения теплостойких электроизоляционных покрытий металлах и может быть использовано в электротехнике, радиоэлектронной промышленности, энергетике, машиностроении. Органосиликатная композиция содержит компоненты при следующем соотношении, мас.%: полиметилфенилсилоксан - 24-27,5, хризотиловый асбест - 40-42, оксид ванадия V2O5 - 5-6,5, алюмоборосиликатное стекло - 26-30. Дополнительным компонентом является органический растворитель. Обеспечивается повышение теплостойкости покрытия до 700°С, стойкости к резкому изменению температуры от 20 до 700°С, твердости и адгезионной прочности к металлу. 1 з.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к лакокрасочным материалам для получения теплостойких электроизоляционных покрытия горячего отверждения на металлах и может быть использовано в электротехнике, радиоэлектронной промышленности, энергетике, машиностроении.

Известен ряд органических композиций, покрытия которых в процессе термообработки при повышенных температурах полностью обезуглераживаются и превращаются в неорганический материал, сохраняя при этом свою целостность и некоторые защитные свойства. Например, в патенте РФ №2182582 описывается композиция для термостойкого антикоррозионного покрытия, содержащего полифенилсилоксановую смолу, акриловый сополимер, термостойкий пигмент, молотую слюду, реологическую добавку и органический растворитель. Техническим результатом является то, что покрытие на основе предложенной композиции обладает термостойкостью 450-600°С, что ниже теплостойкости покрытия заявленной композиции.

В патенте РФ №2266937 описывается композиция для термостойкого антикоррозионного покрытия содержащая полифенилсилоксановый полимер, сополимер бутилметакрилата и метакриловой кислоты, термостойкий пигмент, волластанит (наполнитель), реологическую добавку и органический растворитель. Техническим результатом является получение термостойкого покрытия для защиты металлических поверхностей при воздействии повышенной температуры до 600-650°С, что ниже теплостойкости покрытия заявленной композиции.

В патенте РФ №2340643 описывается композиция для термостойкой краски, которая может быть использована для маркировки сварочных электродов, металлических изделий в горячем состоянии, а также для

дополнительной защиты огнеупорной футеровки печей. Термостойкая краска состоит, масс.%: 63-66 пигмента красного железноокисного, 28,5-30,5 железа треххлористого 6-водного, 5,44-6,47 оксида цинка, 0,02-0,04 этилового спирта, 0,01-0,02 триэтиленгликоля. Покрытие на основе этой краски на огнеупорных кирпичах могут использоваться до 800°С, но на металлах только до 300-400°С, что ниже теплостойкости покрытия заявленной композиции.

В патенте РФ №2400509 описывается лакокрасочный материал для термостойкого покрытия, предназначенного для защиты металлических поверхностей, работающих при повышенных температурах. Эта композиция содержит полиорганосилоксановую смолу, акриловую смолу (полимер изобутиметакрилата), термостойкий пигмент, молотую слюду и/или пористый силикат в качестве наполнителя, реологическую добавку (бентонитовую глину), пентафлалевый лак, загуститель (пангель или тиксагель) и органический растворитель. Теплостойкость данного покрытия составляет 600-650°С, что ниже теплостойкости покрытия заявленной композиции.

В патенте РФ №2468053 описывается лакокрасочный антикоррозионный материал, который может быть использован для защиты металлических поверхностей, эксплуатируемых в условиях повышенной температуры и воздействия высокой коррозионной среды. Эта композиция содержит эпоксидно-диановую смолу ЭД-20, модифицированную термостойким борорганическим полимером (полиметилен-п-трифениловый эфир борной кислоты), пластификатор (диоктилфтолат), микроармирующий наполнитель (волластанит), пигмент (технический углерод), армирующий наполнитель (микрокремнезем), органический растворитель и отвердитель. Теплостойкость покрытия данной композиции 600-670°С, что ниже теплостойкости покрытия заявленной композиции.

В патенте РФ №2495895 описывается лакокрасочный материал, который может быть использован в машиностроении для защиты металлических

поверхностей, работающих при повышенных температурах, в условиях высокой коррозионной агрессивной среды. Полученная на основе этого материала термостойкая эмаль содержит метилфенилсилоксановую смолу, полимер бутилметакрилата, пентафталевый лак, термостойкий пигмент, микронизированный наполнитель, загуститель, реологическую добавку (бентонитовая глина) и органический растворитель. Теплостойкость эмали данного материла 600°С, что ниже теплостойкости покрытия заявленной композиции.

Известна органосиликатная композиция по патенту РФ №2520481 для получения антикоррозионных, электроизоляционных, теплостойких покрытий горячего отверждения на металлах и клея для глиноземной керамики, включающая кремнийорганическое связующее в виде полиметилфенилсилоксана и наполнители в виде талька и оксидов металлов, отличающаяся тем, что она дополнительно содержит двухзамещенный алюмофосфат, при следующем соотношении компонентов, масс.%: полиметилфенилсилоксан - 25-35, тальк - 40-52, оксид хрома - 5-7 двухзамещенный алюмофосфат -16-20.

Данная композиция позволяет получать защитные покрытия, обладающие теплостойкостью до 600°С и стойкостью к термоударам от -60°С до +600°С. Хорошая антикоррозионная устойчивость покрытия подтверждается водостойкостью. Поскольку данная и заявленная композиции являются органосиликатными, то есть состоящими из кремнийорганического полимера, слоистого гидросиликата, оксида, и отличаются только добавкой к вышеуказанным компонентам, данная известная композиция принята нами в качестве прототипа.

Недостатком прототипа является недостаточная теплостойкость (600°С) и адгезионная прочность, а также высокое (24%) водопоглощение после термообработки при высокой температуре.

Задачей изобретения является разработка органосиликатной композиции для теплостойкого защитного покрытия, которое характеризовалось бы такой

же простой технологией получения, как у прототипа, была бы удобна в эксплуатации, но покрытие имело бы более высокую теплостойкость, адгезионную прочность, твердость и меньшее водопоглощение.

Сущность изобретения, как технического решения, выражается в следующей совокупности существенных признаков.

Согласно изобретению органосиликатная композиция для защитных электроизоляционных покрытий, включающая кремнийорганическое связующее в виде модифицированного полиметилфенилсилоксана и наполнителей в виде хризотилового асбеста и оксида ванадия V2O5, отличающаяся тем, что она дополнительно содержит алюмоборосиликатное стекло при следующих соотношениях компонентов, масс. %:

полиметилфенилсилоксан - 24-27,5,

хризотиловый асбест - 40-42,

оксид ванадия V2O5- 5-6,5,

алюмоборосиликатное стекло - 26-30.

Кроме того, заявленное изобретение характеризуется наличием дополнительных факультативных признаков, которые заключаются в том, что в композицию может быть дополнительно введен органический растворитель в количестве, достаточном для улучшения технических свойств композиции.

Непосредственным техническим результатом, достигаемым при реализации совокупности существенных признаков заявленного изобретения, является то, что заявленная органосиликатная композиция, содержит алюмоборосиликатное стекло, которое производится промышленностью для получения стекловолокна и имеет состав, мол.%: А1203 - 14,73, В2Оз - 9,64, Si02 - 53,62, CaO+MgO - 20,86, Na20 - 0,46, К20 - 0,31. Покрытие на основе этой композиции по сравнению с прототипом имеет более высокую термостойкость (до 700°С) и более низкое поглощение влаги. В отличие от неорганических эмалей покрытие может выдержать резкие изменения

температуры. Было установлено, что композиция сохраняет свою жизнеспособность (не желируется) в течение года.

Заявленная композиция изготавливается следующим образом.

В шаровую мельницу объемов 0,5 л загружают фарфоровые шары объемом 0,15-0,2 л, сухие компоненты: оксид ванадия V205 и алюмоборосиликатное стекло, порошок асбеста и раствор модифицированного полиметилфенилсилоксана с рассчитанным количеством растворителя (толуола), в количестве достаточном для улучшения технических свойств композиции. После 17 часов вращения шаровой мельницы полученную суспензию выгружают. Для получения покрытий данная композиция остается пригодной в течение не менее года хранения. Полученную композицию наносят на подложку различными методами лакокрасочной технологии: окунанием, поливом, пульверизацией, кистью, валиком. Нанесенное покрытие в зависимости от его толщины сушат при комнатной температуре 1-3 часа и затем подвергают термообработке, которая проводится следующий образом: 2 часа при 300°С (с подъемом температуры 2-3 градуса в минуту) и по одному часу при 500°С и 700°С.

При 700°С в результате размягчения стекла и его реакции с асбестом полученное покрытие частично превращается в стеклокерамический материал и обладает нижеуказанными механическими свойствами и меньшим водопоглощением, чем другие термостойкие органосиликатные покрытия после их обезуглероживания при высокой температуре.

Исследование свойств покрытий проводили в лабораторных условиях. Состав примеров исследованных композиций приведен в таблице 1, полученные показатели при испытаниях покрытий - в таблице 2.

После термообработки при 700°С покрытие состоит из 2 слоев. Верхний слой (по массе 8-12%) - рыхлая масса, которая достаточно легко счищается электрокартщеткой. Нижний слой счищается значительно труднее, чем все опытные и выпускаемые промышленные органосиликатные покрытия, что

свидетельствует о высокой адгезионной прочности полученного материала к металлу. Основная масса покрытия находится в нижнем слое, что свидетельствует о том, что асбест покрытия вступает в реакцию с алюмоборосиликатным стеклом.

Следует отметить, что увеличение или уменьшение содержания алюмоборосиликатного стекла в покрытии приводит при термообработке 700°С к появлению дефектов. Например, покрытие, содержащее 24% полимера, 39% асбеста, 5% оксид ванадия V2O5 и 32% алюмоборосиликатного стекла, после термообработки при 700°С частично отслоилось. Покрытие, содержащее 20% полимера, 40% асбеста, 5% оксида ванадия V205 и 35% алюмоборосиликатного стекла, после термообработки при 700°С отслоилось полностью.

Приведенные в таблицах примеры определяют оптимальное соотношение компонентов композиции, основанной на одном кремнийорганическом связующем и трех активных неорганических наполнителях. Заявленная композиция позволяет получать защитные покрытия, обладающие по сравнению с прототипом более высокой нагревостойкостью до 700°С и стойкостью к термоударам. По своей твердости и адгезионной прочности к металлу покрытие превосходит прототип, а электроизоляционным свойствам покрытие не уступает прототипу.

Заявленная органосиликатная композиция проста в изготовлении и удобна в эксплуатации. Производство этой композиции может быть реализовано промышленным способом в условиях серийного производства с использованием известных технических и технологических средств.

1. Органосиликатная композиция для защитных электроизоляционных покрытий, включающая кремнийорганическое связующее в виде модифицированного полиметилфенилсилоксана и наполнители в виде хризотилового асбеста и оксида ванадия V2O5, отличающаяся тем, что она дополнительно содержит алюмоборосиликатное стекло при следующем соотношении компонентов, мас. %:

полиметилфенилсилоксан - 24-27,5,

хризотиловый асбест - 40-42,

оксид ванадия V2O5 - 5-6,5,

алюмоборосиликатное стекло - 26-30.

2. Композиция по п. 1, отличающаяся тем, что в нее дополнительно введен органический растворитель в количестве, достаточном для улучшения технических свойств композиции.



 

Похожие патенты:
Изобретение относится к области электротехники, применяется для герметизации электротехнических изделий и радиоэлектронной аппаратуры и служит для их защиты от негативного влияния атмосферы воздуха и/или негативного влияния различных факторов при использовании электрооборудования под землей.

Изобретение относится к полимерной композиции, в том числе сшиваемой полимерной композиции, применяемой для изоляции в силовых кабелях, в частности кабелях высокого напряжения (ВН) и сверхвысокого напряжения (СВН).
Изобретение относится к области химии полимеров и касается износозащитного материала, который может использоваться в зоне контактирующих поверхностей вала и ступицы.

Изобретение относится к способу функционализации основанного на этилене (со)полимера, включающему стадию контактирования основанного на этилене (со)полимера при температуре в диапазоне от 100 до 250°C с азидом формулы (I) (I),где Y представляет собой ,m равно 0 или 1, n равно 0 или 1, n+m равно 1 или 2, и X представляет собой функциональную группу линейного или разветвленного, алифатического или ароматического углеводорода с 1-12 атомами углерода, необязательно содержащего гетероатомы, функционализированным и модифицированным основанным на этилене (со)полимерам на основе этилена, получаемым указанным способом, а также к их использованию для производства силовых кабелей.

Изобретение относится к сшитой полимерной композиции, ее применению в изоляции силового кабеля и силовому кабелю. Сшитую полимерную композицию получают путем сшивания полимерной композиции, которая имеет показатель текучести расплава (ПТР2) по меньшей мере 1,7 г/10 мин и содержит полиолефин, пероксид и содержащий серу фенольный антиоксидант.

Изобретение относится к сшитой полимерной композиции, ее применению в изоляции силового кабеля и силовому кабелю. Сшитую полимерную композицию получают путем сшивания полимерной композиции, которая имеет показатель текучести расплава (ПТР) менее 1,7 г/10 мин и содержит полиолефин, пероксид и фенольный серосодержащий антиоксидант.

Изобретение относится к способу улучшения электроизоляционных свойств композиции полиэфирной смолы. Способ включает введение 0,001-1,0 мас.

Изобретение относится к области машиностроения. Защитный экран содержит слой поглощения рентгеновского излучения.
Изобретение относится к системе защиты против тлеющего разряда для электрической машины высокого напряжения. Система защиты против тлеющего разряда отличается смесью наполнителей, в которой имеют место как плоские, так и сферические частицы.

В заявке описан датчик (10) для определения по меньшей мере одного свойства анализируемого газа в заполненном им пространстве. Такой датчик (10), имеющий корпус (12) с отверстием (14), через которое из корпуса (12) выведен по меньшей мере один соединительный провод (18), и по меньшей мере один уплотнительный элемент (20), прежде всего проходную втулку, который по меньшей мере частично окружает соединительный провод (18) и имеет по меньшей мере один первый участок (28) и по меньшей мере один второй участок (30), из которых первый участок (28) обладает большей деформируемостью, чем второй участок (30), отличающийся тем, что уплотнительный элемент (20) выполнен из по меньшей мере одного полимерного материала, содержащего по меньшей мере один пластификатор, при этом первый участок (28) и второй участок (30) содержат пластификатор в полимерном материале в разном количестве.

Изобретение относится к диэлектрической композиции для композиционных полимерных материалов и может применяться для создания радиопрозрачных изделий и покрытий приемо-передающих радиотехнических комплексов для авиакосмической, морской, сухопутной техники гражданского и специального назначения.

Изобретение относится к получению полимерного материала для изготовления изоляции электрического кабеля от агрессивной среды, в частности нефтепогружного кабеля, применяемого для питания погружных электродвигателей, в том числе для установок электроцентробежных насосов в нефтяных скважинах.

Изобретение относится к термостойким электроизоляционным кремнийорганическим композициям на основе линейно-лестничных блок-сополимеров, содержащих линейные полидиметилсилоксановые и лестничные фенилсилсесквиоксановые звенья, и может быть использовано в микроэлектронике, радиоэлектронике и электронном приборостроении для получения термостойких эластичных и прочных электроизоляционных коррозиопассивных покрытий, предназначенных для защиты активных элементов изделий микроэлектроники от воздействия жестких климатических факторов.

Изобретение относится к лакокрасочным покрытиям, в частности к лаковым композициям с высокими электроизоляционными свойствами и низкой влагопроницаемостью, предназначенным для защиты плат печатного монтажа и элементов радиоэлектронной аппаратуры (РЭА), и может быть использовано в авиастроении, ракетно-космической, машиностроении и других отраслях промышленности.
Изобретение относится к электроизоляционным лакам, применяемым для эмалирования проводов в электротехнической промышленности, и, в частности, к лакам на основе полиэфиров.
Изобретение относится к эпоксидным электроизоляционным составам, в частности составам на основе эпоксидных или полиэфирных смол в органическом растворителе, и может быть использовано в производстве изделий радиотехники и электроники, к которым предъявляются высокие требования по электрической изоляции и воздействию повышенной температуры рабочей среды.

Изобретение относится к области металлургии. Для увеличения на поверхности плоского изделия из электротехнической стали растягивающих напряжений и обеспечения оптимальных магнитных свойств способ изготовления плоского изделия из электротехнической стали с ориентированным зерном с минимальными величинами магнитных потерь состоит из этапов: а) подготовка плоского изделия из электротехнической стали, b) нанесение слоя, содержащего фосфат изоляционного раствора, по меньшей мере, на одну поверхность плоского изделия из электротехнической стали и обжиг нанесенного слоя, после первого проведения этапа b) этот этап b) повторяют, по меньшей мере, один раз, вследствие чего из нанесенных друг за другом друг на друга и обожженных слоев содержащего фосфат изоляционного раствора образуется изоляционное покрытие, при этом при толщине покрытия D до 3 мкм, удельная плотность r покрытия равна ≥ 5 г/м2, а при толщине D больше 3 мкм удельная плотность r покрытия равна r[г/м2]>3/5 г/мкм/м2·D [мкм].

Изобретение относится к электротехнике, а именно к составам электроизоляционных покрытий и пропиток обмоток электрических машин и аппаратов, работающих при высоких температурах и предназначенных преимущественно для нанесения покрытия окунанием.
Изобретение относится к не содержащему хром материалу для изоляционного покрытия нетекстурированной электротехнической стали. Материал содержит следующие компоненты с соответствующими массовыми долями: первичная кислая соль металла фосфорной кислоты в объеме 100 долей, эпоксидная смола в объеме 10-60 долей, осушитель-нафтенат или осушитель-соль металла изооктановой кислоты в объеме 0,001-10 долей, органический растворитель в объеме 0,001-100 долей и чистая вода в объеме 60-2000 долей.
Изобретение относится к получению электроизоляционных лаков для покрытия металлических основ, например медных проводов, пазов статоров и якорей электродвигателей, проводников печатных плат и т.д.

Изобретение относится к способам защиты поверхностей от воздействия высоких температур и может быть применено в теплоэнергетике, строительстве, нефтегазовых отраслях, химической и космической промышленности.

Изобретение относится к лакокрасочным материалам для получения теплостойких электроизоляционных покрытий металлах и может быть использовано в электротехнике, радиоэлектронной промышленности, энергетике, машиностроении. Органосиликатная композиция содержит компоненты при следующем соотношении, мас.: полиметилфенилсилоксан - 24-27,5, хризотиловый асбест - 40-42, оксид ванадия V2O5 - 5-6,5, алюмоборосиликатное стекло - 26-30. Дополнительным компонентом является органический растворитель. Обеспечивается повышение теплостойкости покрытия до 700°С, стойкости к резкому изменению температуры от 20 до 700°С, твердости и адгезионной прочности к металлу. 1 з.п. ф-лы, 2 табл., 3 пр.

Наверх