Способ получения циклогексанола и/или циклогексанона

Настоящее изобретение относится к способу получения циклогексанола и/или циклогексанона, заключающемуся в окислении циклогексана кислородсодержащим газом в присутствии имидного катализатора, при повышенной температуре и давлении. При этом первоначально производят нагрев смеси исходного циклогексана с катализатором до температуры 155-170°С, затем подают воздух, смесь выдерживают 0,5-5 минут, после чего температуру снижают до 115-150°С, при которой процесс ведут в течение 30-90 минут, причем в качестве катализатора используется соединение следующей формулы (1), где R1, R2, R3, R4 - одинаковые или различные заместители, например водород, галоген, алкильная, гидроксильная, циклоалкильная, фенильная группа

(1),

R1, R2, R3, R4=H (a); R2, R3, R4=H, R1=CH3 (b); R1, R3, R4=H, R2=CH3 (c); R2, R3, R4=H, R1=C6H5 (d); R1, R3, R4=H, R26Н5 (e); R2, R3, R4=H, R1=Cl (f); R1, R3, R4=H, R2=Cl (g); R2, R3, R4=H, R1=Br (h); R1, R3, R4=H, R2=Br (i); R2, R3, R1, R2, R3, R4=Cl (k); R1, R2, R3, R4=Br (I); R1, R3, R4=H, R2=NO2 (n). Предлагаемый способ позволяет повысить скорость и селективность процесса. 2 з.п. ф-лы, 7 пр.

 

Настоящее изобретение относится к способу окисления циклогексана в циклогексанол и/или циклогексанон кислородсодержащим газом в присутствии фталимидных катализаторов.

Циклогексанон является крупнотоннажным продуктом основного органического синтеза и находит свое применение в производстве капролактама, различных полимерных материалов, а также в других важных отраслях химической промышленности. Циклогексанол применяется в органическом синтезе, в производстве пластификаторов, как реагент при флотации сильвинитовой руды, при получении адипиновой кислоты, как растворитель. Смесь циклогексанола с циклогексаноном (КА-масло) применяется и без разделения, в частности, в производстве адипиновой кислоты.

Для интенсификации процессов окисления и повышения их селективности используют катализаторы. Чаще всего в качестве катализаторов процессов окисления используют соли (оксиды, галлиды, комплексы, соли гетерополикислот) металлов переменной валентности. Промышленный процесс характеризуется малой скоростью и низким выходом целевых продуктов: максимальная суммарная селективность процесса не превышает 80-85%, при конверсии циклогексана не превышающей 3-4%. Процесс проводится с использованием нафтената кобальта в достаточно жестких условиях: 160-180°С, давлении воздуха 0,9-1,3 МПа. [Фурман М.С. Производство циклогексанона и адипиновой кислоты окислением циклогексана. М.: Химия, 1967. - 240 с.].

В настоящее время продолжается поиск систем, обеспечивающих регулируемое окисление циклогексана до кетона или спирта с высокой селективностью.

Наиболее близким к предлагаемому способу получения циклогексанола и/или циклогексанона является окисление циклогексана кислородсодержащим газом при постоянной температуре 90-160°С, давлении 0,1-3 МПа, в течение 0,1 -4 часов, в присутствии каталитической системы, состоящей из циклического го N-гидроксиимида, солей металлов переменной валентности, циклогексанона или смеси циклогексанона и циклогексанола. Циклогексанон или смесь циклогексанола и циклогексанона добавляется в исходную смесь вместе с циклогексаном, а также в ходе реакции, с целью повышения производительности, кроме этого он выступает в качестве растворителя для катализатора. При этом конверсия циклогексана составляет 5-9% за 1 час реакции, а селективность образования циклогексанола и циклогексанона не превышает 75% [ЕР 1209143 A1, ShuzoMurata, NobuhiroTani.Processforpreparingcyclohexanone, cyclohexanolandcyclohexylhydroperoxide].

Задача изобретения - повышение скорости и увеличение селективности процесса.

Данная задача решается путем использования способа окисления циклогексана кислородсодержащими газами (с содержанием кислорода от 10 до 30%), при повышенном давлении (2-5 МПа), температуре 115-150°С, в присутствии в качестве катализатора соединений следующей формулы (1), где R1, R2, R3, R4 - одинаковые или различные заместители, например водород, галоген, алкильная, гидроксильная, циклоалкильная, фенильная группа, предпочтительно соединения а-n и особенно N-гидроксифталимид (а), в количестве 0,01-3% масс (предпочтительно 0,05-1% масс.). Совместно с катализаторами допускается использование инициатора азодиизобутиронитрила в количестве не более 0,01 моль/л.

R1, R2, R3, R4=Н (a); R2, R3, R4=Н, R1=CH3 (b); R1, R3, R4=H, R2=CH3 (с); R2, R3, R4=Н, R16Н5 (d); R1, R3, R4=H, R26Н5 (e); R2, R3, R4=H, R1=Cl (f); R1, R3, R4=H, R2=Cl (g); R2, R3, R4=H, R1=Br (h); R1, R3, R4=H, R2=Br (i); R2, R3, R1, R2, R3, R4=Cl (k); R1, R2, R3, R4=Br (I); R1, R3, R4=H, R2=NO2 (n).

С целью интенсификации процесса первоначально производится нагрев смеси циклогексана и катализатора до температуры 155-170°С, после чего подается кислородсодержащий газ, смесь выдерживается в течение 0,5-5 минут, после чего температура снижается до 115-150°С, при которой процесс ведется в течение 30-90 минут.

Охлаждение смеси циклогексана и катализатора может быть произведено, к примеру, путем временного отключения подогрева реактора; с использованием встроенных или выносных холодильников окислительного реактора; путем проведения процесса в каскаде реакторов с различной температурой. Выбор технологической схемы, а также времени, за которое осуществляется описанное снижение температуры (предпочтительно наименьшее), осуществляется из экономических или иных соображений.

В роли кислородсодержащих газов может выступать воздух или кислород, в том числе разведенные инертными газами (азот, гелий и др.). С целью обеспечения экономической эффективности и безопасности процесса скорость подачи кислородсодержащего газа регулируется таким образом, чтобы концентрация кислорода в отходящих газах не превышала 8% (об.).

Данное изобретение не предусматривает использование катализаторов на основе солей металлов переменной валентности, которые, как известно, повышая скорость окисления циклогексана, одновременно снижают селективность процесса.

По завершении процесса, при необходимости, продукты окисления (оксидат) промывается водой и кислотами и/или щелочами. Разделение продуктов реакции может быть произведено, к примеру, методами фильтрования и ректификации. После выделения, катализатор и непрореагировавший циклогексан может быть возвращен в рецикл.

Техническим результатом является значительное повышение скорости окисления циклогексана: конверсия исходного вещества составляет 7-12% за 30-90 минут реакции при повышении суммарной селективности образования циклогексанона и циклогексанола до 90-97%.

Настоящее изобретение иллюстрируется следующими примерами:

Пример 1

В титановый реактор емкостью 100 см3 загружали 50 см3 циклогексана и 0,1% масс. N-гидроксифталимида. Исходную смесь нагревали до температуры 165°С под давлением воздуха 2 Мпа. При достижении 165°С пропускали воздух в таком количестве, чтобы содержание кислорода в отходящих газах составляло 4-6%. Спустя 1 минуту в течение 5 минут путем снятия обогрева реактора температуру снижали до 150°С, при которой процесс вели далее в течение 54 минут. Суммарное время реакции - 1 час.

Оксидат анализировали на содержание исходных веществ и продуктов реакции, фильтровали и разделяли методом вакуумной ректификации.

Конверсия циклогексана составила 9,3%, содержание циклогексанола в оксидате - 3,2%, а циклогексанона - 5,7%, при селективности их образования 95,1%.

Пример 2

Окисление циклогексана проводят по примеру 1, но при концентрации N-гидроксифталимида 0,25% масс, под давлением 3,5 МПа при температуре 155°С в течение 2 минут и далее 135°С. Суммарное время реакции - 1 час.

Конверсия циклогексана составила 9,5%, содержание циклогексанола в оксидате-2,5%, а циклогексанона - 6,3% при селективности их образования 92,6%.

Пример 3

Окисление циклогексана проводят по примеру 1, но под давлением 5 МПа, при температуре 160°С в течение 1 минуты и далее 150°С.Суммарное время реакции - 1 час.

Конверсия циклогексана составила 11,5%, содержание циклогексанола в оксидате - 4,3%, а циклогексанона - 7,1% при селективности их образования 91,2%.

Пример 4

Окисление циклогексана проводят по примеру 1, нопод давлением 5 МПа, при температуре 170°С в течение 1 минуты и далее 150°С. Суммарное время реакции - 30 минут.

Конверсия циклогексана составила 7,2%, содержание циклогексанола в оксидате - 2,3%, а циклогексанона - 4,4% при селективности их образования 93.1%.

Пример 5

Окисление циклогексана проводят по примеру 1, но в качестве катализатора используется 4-метил-N-гидроксифталимид (с).

Конверсия циклогексана составила 10,5%, содержание циклогексанола в оксидате - 3,8%, а циклогексанона - 6,0%, при селективности их образования 93,7%.

Пример 6

Окисление циклогексана проводят по примеру 1, но в качестве катализатора используется 4-нитро-N-гидроксифталимид (п).

Конверсия циклогексана составила 7,4%, содержание циклогексанола в оксидате - 2,3%, а циклогексанона - 4,7%, при селективности их образования 95.2%.

Пример 7

Окисление циклогексана проводят по примеру 1, но с добавлением азо-диизобутиронитрила в количестве 4,7⋅10-4 моль/л.

Конверсия циклогексана составила 10,3%, содержание циклогексанола в оксидате - 3,5%, а циклогексанона - 5,4% при селективности их образования 86,5%.

1. Способ получения циклогексанола и/или циклогексанона окислением циклогексана кислородсодержащим газом в присутствии имидного катализатора, при повышенной температуре и давлении, отличающийся тем, что первоначально производят нагрев смеси исходного циклогексана с катализатором до температуры 155-170°С, затем подают воздух, смесь выдерживают 0,5-5 минут, после чего температуру снижают до 115-150°С, при которой процесс ведут в течение 30-90 минут, причем в качестве катализатора используется соединение следующей формулы (1), где R1, R2, R3, R4 - одинаковые или различные заместители, например водород, галоген, алкильная, гидроксильная, циклоалкильная, фенильная группа.

(1)

R1, R2, R3, R4=H (a); R2, R3, R4=H, R1=CH3 (b); R1, R3, R4=H, R2=CH3 (c); R2, R3, R4=H, R1=C6H5 (d); R1, R3, R4=H, R26Н5 (e); R2, R3, R4=H, R1=Cl (f); R1, R3, R4=H, R2=Cl (g); R2, R3, R4=H, R1=Br (h); R1, R3, R4=H, R2=Br (i); R2, R3, R1, R2, R3, R4=Cl (k); R1, R2, R3, R4=Br (I); R1, R3, R4=H, R2=NO2 (n).

2. Способ по п. 1, отличающийся тем, что в качестве катализатора используют N-гидроксифталимид (а).

3. Способ по п. 1, отличающийся тем, что совместно с имидным катализатором используют инициатор азодиизобутиронитрил в количестве не более 0,01 моль/л.



 

Похожие патенты:

Изобретение относится к способу получения циклогексанона, циклогексанола и циклогексилгидропероксида, заключающемуся в превращении циклогексана в смесь, содержащую 0,5-4,0 масс.

Настоящее изобретение относится к непрерывному способу получения очищенного циклогексанона, который является промежуточным продуктом для производства нейлона-6. Способ включает следующие стадии: I.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, посредством приведения в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы (I): , где- Y представляет собой N или O;- X=1, если Y=O, или 2, если Y=N;- Z представляет собой валентность металла; и- M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z.

Изобретение может быть использовано в технологии основного органического синтеза для выделения циклогексанона высокой степени чистоты, применяемого в качестве сырья для получения капролактама.

Изобретение относится к области каталитического процесса дегидрирования циклогексанола в технологии получения ε-капролактама. Заявленный катализатор дегидрирования циклогексанола в циклогексанон включает карбонат кальция, оксид цинка, дополнительно содержит смесь терморасширенного графита и шунгита в их соотношении 1,0-1,2:0,1-0,12 при следующем содержании компонентов, мас.%: карбонат кальция - 16,0-38,0; оксид цинка - 61,5-2,5; смесь терморасширенного графита и шунгита - 0,5-1,5.
Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, включающему контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа.

Изобретение относится к способу кислотного разложения технического гидропероксида кумола в последовательно установленных реакторах при повышенном давлении и повышенной температуре с подачей в реакторы дополнительного количества ацетона в расчете на подаваемый гидропероксид с управлением процессом разложения гидропероксида.

Изобретение относится к способу получения цис-конденсированного бициклического производного формулы (II) из соответствующего транс-конденсированного бициклического производного формулы (I), который включает стадию взаимодействия указанного транс-конденсированного бициклического производного с гидридным основанием формулы М-Н, где М представляет собой атом IA группы.

Изобретение относится к способу гидрирования фенола на палладиевом катализаторе (0,5% мас. Pd на сверхсшитом полистироле (СПС)) в избытке водорода при соотношении водород:фенол=4-5:1 (мольное) при атмосферном давлении.
Изобретение относится к способу дегидрирования циклогексанола в циклогексанон. Предложенный способ дегидрирования циклогексанола в циклогексанон осуществляют в газовой фазе при повышенной температуре в присутствии катализатора, содержащего активные компоненты, на 56÷88 мас.% состоящие из оксида цинка и на 8,0÷39,0 мас.% из карбоната кальция.

Изобретение относится к усовершенствованному способу получения акриловой кислоты из пропана, в соответствии с которым А) в первую реакционную зону А вводят по меньшей мере два образующих реакционный газ А, содержащих пропан газообразных исходных потока, по меньшей мере один из которых содержит свежий пропан, реакционный газ А пропускают по меньшей мере через один слой катализатора реакционной зоны А, в котором вследствие частичного гетерогенно-катализируемого дегидрирования пропана образуются молекулярный водород и пропилен, в реакционную зону А вводят молекулярный кислород, который окисляет содержащийся в реакционном газе А молекулярный водород до водяного пара, и из реакционной зоны А отбирают газообразный продукт А, содержащий молекулярный водород, водяной пар, пропилен и пропан, В) отбираемый из реакционной зоны А газообразный продукт А при подаче молекулярного кислорода используют в реакционной зоне В для питания по меньшей мере одного реактора окисления реакционным газом В, содержащим молекулярный водород, водяной пар, пропан, пропилен и молекулярный кислород, и содержащийся в реакционном газе В пропилен подвергают в реакционной зоне В двухстадийному гетерогенно-катализируемому частичному газофазному окислению, получая газообразный продукт В, содержащий акриловую кислоту в качестве целевого продукта, непревращенный пропан, молекулярный водород, водяной пар и диоксид углерода в качестве побочных продуктов, а также другие побочные компоненты с температурой кипения ниже и выше точки кипения воды, С) газообразный продукт В выводят из реакционной зоны В и в первой зоне разделения I посредством фракционной конденсации или посредством абсорбции выделяют содержащиеся в нем акриловую кислоту, воду и побочные компоненты с температурой кипения выше точки кипения воды, причем остающийся после их выделения остаточный газ I содержит непревращенный пропан, диоксид углерода, молекулярный водород, побочные компоненты с температурой кипения ниже точки кипения воды, а также, при необходимости, непревращенные в реакционной зоне В пропилен и молекулярный кислород, D) остаточный газ I подвергают дополнительным обработкам: отмывание содержащегося в остаточном газе I диоксида углерода, выведение частичного количества остаточного газа I, а также, при необходимости, выделение содержащегося в остаточном газе I молекулярного водорода посредством разделительной мембраны, Е) содержащий непревращенный пропан остаточный газ I после дополнительной обработки возвращают в реакционную зону А в качестве по меньшей мере одного из по меньшей мере двух содержащих пропан исходных потоков, в котором в реакционной зоне А осуществляют окисление определенного количества (М) молекулярного водорода до водяного пара, которое составляет по меньшей мере 35 мол.%, но не более 65 мол.% от суммарного количества производимого в реакционной зоне А и, при необходимости, вводимого в нее молекулярного водорода.

Изобретение относится к способу осуществления непрерывного производственного процесса получения акролеина, акриловой кислоты или их смеси из пропана в стабильном рабочем режиме, в соответствии с которым: А) в первой реакционной зоне А пропан подвергают гетерогенно-катализируемому дегидрированию в присутствии молекулярного кислорода, получая содержащую пропан и пропилен газовую смесь продуктов А, В) газовую смесь продуктов А, при необходимости, направляют в первую зону разделения А, в которой из нее отделяют часть или более отличающихся от пропана и пропилена компонентов и получают остающуюся после отделения газовую смесь продуктов А', содержащую пропан и пропилен, С) газовую смесь продуктов А или газовую смесь продуктов А' направляют, по меньшей мере, в один реактор окисления второй реакционной зоны В, в котором содержащийся в них пропилен подвергают частичному селективному гетерогенно-катализируемому газофазному окислению молекулярным кислородом, получая газовую смесь продуктов В, которая содержит акролеин, акриловую кислоту или их смесь в качестве целевого продукта, непревращенный пропан, избыточный молекулярный кислород и, при необходимости, непревращенный пропилен, D) во второй зоне разделения В из газовой смеси продуктов В отделяют содержащийся в ней целевой продукт и по меньшей мере часть остающегося после этого газа, содержащего пропан, молекулярный кислород и, при необходимости, непревращенный пропилен, возвращают в реакционную зону А в качестве содержащего молекулярный кислород циркуляционного газа 1, Е) по меньшей мере, в одну зону непрерывного производственного процесса, выбранную из группы, включающей реакционную зону А, зону разделения А, реакционную зону В и зону разделения В, вводят свежий пропан, скорость подачи которого при осуществлении производственного процесса в стабильном рабочем режиме характеризуется заданным стационарным значением, и F) непрерывно определяют содержание молекулярного кислорода в газовой смеси продуктов В и сравнивают его с заданным стационарным целевым значением, необходимым для осуществления производственного процесса в стабильном рабочем режиме, отличающийся тем, что в случае если в определенный момент времени содержание молекулярного кислорода в газовой смеси продуктов В превышает заданное стационарное целевое значение, в производственный процесс сразу же вводят свежий пропан со скоростью подачи выше ее стационарного значения, и в случае если в определенный момент времени содержание молекулярного кислорода в газовой смеси продуктов В ниже соответствующего заданного стационарного целевого значения, в производственный процесс сразу же вводят свежий пропан со скоростью подачи ниже ее стационарного значения.

Изобретение относится к способу получения акролеина, акриловой кислоты или их смеси из пропана, в соответствии с которым А) на вход в первую реакционную зону А подают входящий поток реакционной газовой смеси А, полученный объединением, по меньшей мере, четырех отличающихся друг от друга газообразных исходных потоков 1, 2, 3 и 4, причем газообразные исходные потоки 1 и 2 содержат пропан, газообразный исходный поток 4 является молекулярным водородом и газообразный исходный поток 3 является свежим пропаном, входящий поток реакционной газовой смеси А пропускают, по меньшей мере, через один слой катализатора первой реакционной зоны А, на котором, при необходимости, при подаче других газовых потоков, в результате гетерогенно катализируемого частичного дегидрирования пропана, образуется поток продуктов газовой смеси А, содержащий пропан и пропилен, поток продуктов газовой смеси А выводят из первой реакционной зоны А через соответствующий выпуск, при этом разделяя его на два частичных потока 1 и 2 продуктов газовой смеси А идентичного состава, и частичный поток 1 продуктов газовой смеси А возвращают в первую реакционную зону А в качестве газообразного исходного потока 1, частичный поток 2 продуктов газовой смеси А, при необходимости, направляют в первую зону разделения А, в которой отделяют часть или более содержащихся в нем компонентов, отличающихся от пропана и пропилена, в результате чего получают поток продуктов газовой смеси А', содержащий пропан и пропилен.

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С.

Изобретение относится к усовершенствованному способу получения (мет)акролеина и/или (мет)акриловой кислоты путем гетерогенного каталитического частичного окисления в газовой фазе, при котором находящийся в реакторе свежий неподвижный слой катализатора при температуре 100-600°С нагружают смесью загрузочного газа, которая наряду с, по меньшей мере, одним подлежащим частичному окислению С3/С4 органическим соединением-предшественником и окислителем - молекулярным кислородом содержит, по меньшей мере, один газ-разбавитель, причем процесс осуществляют после установки состава смеси загрузочного газа при неизменной конверсии органического соединения-предшественника и при неизменном составе смеси загрузочного газа сначала во входном периоде в течение 3-10 дней при нагрузке от 40 до 80% от более высокой конечной нагрузки, а затем при более высокой нагрузке засыпки катализатора смесью загрузочного газа, причем во входном периоде максимальное отклонение конверсии органического соединения-предшественника от арифметически усредненной по времени конверсии и максимальное отклонение объемной доли одного из компонентов смеси загрузочного газа, окислителя, органического соединения-предшественника и газа-разбавителя, от арифметически усредненной по времени объемной доли соответствующего компонента смеси загрузочного газа не должны превышать ±10% от соответствующего арифметического среднего значения.
Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина, включающему в себя процесс каталитического газофазного окисления для получения (мет)акриловой кислоты или (мет)акролеина подачей пропилена, пропана или изобутилена и газа, содержащего молекулярный кислород, в реактор, заполненный катализатором, содержащим композицию из оксидов металлов, включая Мо, где газ, содержащий молекулярный кислород, непрерывно подают извне на катализатор как во время работы установки, так и во время остановки процесса каталитического газофазного окисления.

Изобретение относится к усовершенствованному способу каталитического окисления в паровой фазе, который обеспечивает эффективное удаление реакционного тепла, не допускает образования горячих пятен и обеспечивает эффективное получение целевого продукта.
Изобретение относится к усовершенствованному способу получения акролеина, или акриловой кислоты, или их смеси, при котором А) на первой стадии А пропан подвергают парциальному гетерогенному катализированному дегидрированию в газовой фазе с образованием газовой смеси А продукта, содержащей молекулярный водород, пропилен, не превращенный пропан и отличные от пропана и пропена компоненты, из содержащихся в газовой смеси А - продукта стадии А отличных от пропана и пропилена компонентов выделяют, по меньшей мере, частичное количество молекулярного водорода и смесь, полученную после указанного выделения, применяют в качестве газовой смеси А' на второй стадии В для загрузки, по меньшей мере, одного реактора окисления и в, по меньшей мере, одном реакторе окисления пропилен подвергают селективному гетерогенному катализированному газофазному парциальному окислению молекулярным кислородом с получением в качестве целевого продукта газовой смеси В, содержащей акролеин, или акриловую кислоту, или их смеси, и С) от получаемой в рамках парциального окисления пропилена на стадии В газовой смеси В на третьей стадии С отделяют акролеин, или акриловую кислоту, или их смеси в качестве целевого продукта и, по меньшей мере, содержащийся в газовой смеси стадии В не превращенный пропан возвращают на стадию дегидрирования А, в котором в рамках парциального окисления пропилена на стадии В применяют молекулярный азот в качестве дополнительного газа-разбавителя.

Изобретение относится к способу получения циклогексанона, циклогексанола и циклогексилгидропероксида, заключающемуся в превращении циклогексана в смесь, содержащую 0,5-4,0 масс.

Настоящее изобретение относится к способу получения циклогексанола иили циклогексанона, заключающемуся в окислении циклогексана кислородсодержащим газом в присутствии имидного катализатора, при повышенной температуре и давлении. При этом первоначально производят нагрев смеси исходного циклогексана с катализатором до температуры 155-170°С, затем подают воздух, смесь выдерживают 0,5-5 минут, после чего температуру снижают до 115-150°С, при которой процесс ведут в течение 30-90 минут, причем в качестве катализатора используется соединение следующей формулы, где R1, R2, R3, R4 - одинаковые или различные заместители, например водород, галоген, алкильная, гидроксильная, циклоалкильная, фенильная группа ,R1, R2, R3, R4H ; R2, R3, R4H, R1CH3 ; R1, R3, R4H, R2CH3 ; R2, R3, R4H, R1C6H5 ; R1, R3, R4H, R2С6Н5 ; R2, R3, R4H, R1Cl ; R1, R3, R4H, R2Cl ; R2, R3, R4H, R1Br ; R1, R3, R4H, R2Br ; R2, R3, R1, R2, R3, R4Cl ; R1, R2, R3, R4Br ; R1, R3, R4H, R2NO2. Предлагаемый способ позволяет повысить скорость и селективность процесса. 2 з.п. ф-лы, 7 пр.

Наверх