Способ получения полых покрытий при газопорошковой лазерной наплавке со сканированием излучения

Изобретение относится к способу послойной лазерной наплавки порошковых материалов на поверхность металлической заготовки, к способам аддитивных технологий для создания поверхностных покрытий с полостями. Способ включает сканирование лазерного луча по подложке, подачу присадочного порошка в ванну расплава и плавление его с получением слоя наплавленного материала. Наплавку каждого последующего слоя проводят перпендикулярно направлению предыдущего слоя, при этом формирующий полости наполнитель укладывают параллельно направлению движения при наплавке. Технический результат изобретения заключается в получении наплавленного покрытия с полостями за счет предварительного нанесения формирующего наполнителя в виде жгута или ленты из углеродного волокна на наплавляемую поверхность подложки (детали) в направлении движения с последующей лазерной наплавкой присадочного материала со сканированием излучения по прямой траектории перпендикулярно направлению движения и механического удаления наполнителя по окончании процесса. 8 з.п. ф-лы, 4 ил.

 

Изобретение относится к способам послойной лазерной наплавки порошковых материалов на поверхность металлической заготовки, к способам аддитивных технологий для создания полых поверхностных покрытий.

Из уровня техники известен способ изготовления полых металлических объектов с внутренними полостями сложной формы, которые используются для уменьшения веса и/или для более эффективного охлаждения поверхности (РФ 2210478 опубликован 20.08.2003).

Недостатком данного способа является применение вставок, формирующих внутренние каналы, с более низкой температурой плавления, чем материал покрытия и основы и невозможность использования метода для лазерной технологии нанесения покрытий.

Из уровня техники известен способ нанесения упрочняющего покрытия на металлические или металлсодержащие поверхности с использованием лазерного излучения со сканированием при изготовлении и восстановлении деталей машин и механизмов, работающих в особо сложных условиях повышенных нагрузок, вибраций, высоких температур и т.д. (РФ 2105826 опубликован 27.02.1998).

Недостатком данного способа является невозможность получения полого наплавленного покрытия за один проход при обработке поверхности.

Задачей изобретения является создание способа получения полых покрытий при газопорошковой лазерной наплавке со сканированием излучения, позволяющего в процессе обработки формировать в переходной зоне от основного материала подложки к наплавленному слою полый объем вдоль всего наплавленного слоя.

Технический результат, на который направлено изобретение, заключается в получении полого наплавленного покрытия за счет предварительного нанесения формирующего наполнителя в виде жгута или ленты из углеродного волокна на наплавляемую поверхность подложки (детали) в направлении движения с последующей лазерной наплавкой присадочного материала со сканированием излучения по прямой траектории перпендикулярно направлению движения и механического удаления наполнителя по окончании процесса.

Сущность изобретения поясняется чертежом, где на фиг. 1 показана схема способа получения полых покрытий при газопорошковой лазерной наплавке со сканированием излучения, где наплавляемая поверхность подложки 1, формирующий наполнитель 2, сфокусированный лазерный луч 3, сканатор 4, газопорошковая смесь 5, коаксиальное сопло 6, наплавленный слой 7.

Способ получения полых покрытий при газопорошковой лазерной наплавке со сканированием излучения состоит в следующем: на наплавляемую поверхность подложки 1 с помощью клеевого или другого фиксирующего состава наносится формирующий наполнитель 2, в виде жгута из углеродного волокна. Сфокусированный лазерный луч 3 с помощью сканатора 4 сканируется перпендикулярно направлению перемещения наплавляемой поверхности подложки 1. Газопорошковая смесь 5, состоящая из присадочного материала и защитного газа подается через боковое сопло 6 или коаксиальное сопло в зону обработки. Таким образом, лазерный луч на наплавляемой поверхности 1 инициирует ванну расплава по обе стороны формирующего наполнителя 2, в которую вдувается порошковый присадочный материал. Порошковый материал плавится и после кристаллизации формирует наплавленный слой 7 в то время, пока зона обработки находится в области лазерного воздействия, луч многократно проходит, наращивая слой за слоем за каждый период. Таким образом, формирующий наполнитель 2, после образования покрытия занимает место в теле наплавленного слоя 7 в зоне перехода от основного материала подложки 1 к наплавленному слою 7. После окончания процесса формирования наплавленного слоя 7 формирующий наполнитель 2 удаляется из наплавленного слоя 7 механически, оставляя полый объем. В качестве формирующего наполнителя 2 выбирается материал с температурой плавления (испарения) выше температуры плавления подложки 1 и присадочного материала. Так для наплавки подложки из ст.45 сплавом Ni-Cr-B-Si в качестве формирующего наполнителя может быть использовано углеродное волокно.

При обработке больших поверхностей наплавку производят нанесением параллельных слоев с перекрытием 5-20%, в зависимости от формы наплавленного слоя (Фиг. 2).

При многослойной наплавке для получения покрытий значительной толщины формирующий наполнитель 2 фиксируется в зоны углубления между наплавленными слоями с последующей лазерной обработкой (Фиг. 3).

В зависимости от конструктивных особенностей обрабатываемой поверхности и при послойном нанесении нескольких покрытий (по толщине) наплавка последующего слоя может проводиться перпендикулярно или под углом направлению предыдущего слоя, следовательно, и формирующий наполнитель 2 должен быть уложен по направлению движения основы. По завершению обработки полые объемы будут находиться в каждом слое (Фиг. 4).

Сканирование лазерного луча производится по прямой, эллипсной или круговой траектории. Траектория сканирования определяется в зависимости от требований к наплавленному покрытию (формы, чистоты поверхности и т.д.).

Использование способа получения полых покрытий при газопорошковой лазерной наплавке со сканированием излучения позволит в процессе обработки формировать в переходной зоне от основного материала подложки к наплавленному слою полый объем вдоль всего наплавленного слоя.

1. Способ газопорошковой лазерной наплавки многослойного покрытия, включающий сканирование лазерного луча по подложке, подачу присадочного порошка в ванну расплава и плавление его с получением слоя наплавленного материала, отличающийся тем, что получают наплавленное покрытие с полостями, при этом предварительно на наплавляемую поверхность подложки осуществляют нанесение формирующего полости наполнителя в виде жгута из углеродного волокна в направлении перемещения подложки, а последующую лазерную наплавку присадочного материала осуществляют со сканированием лазерного луча по прямой траектории перпендикулярно направлению перемещения, и по окончании наплавки наполнитель механически удаляют.

2. Способ по п. 1, отличающийся тем, что наплавку каждого последующего слоя проводят перпендикулярно направлению предыдущего слоя, при этом формирующий полости наполнитель укладывают параллельно направлению движения при наплавке.

3. Способ по п. 1, отличающийся тем, что наплавку последующего слоя осуществляют под углом к направлению предыдущего слоя.

4. Способ по п. 1, отличающийся тем, что при обработке больших поверхностей наплавку производят нанесением параллельных слоев с перекрытием 5-20%.

5. Способ по п. 1, отличающийся тем, что при многослойной наплавке для получения покрытий значительной толщины формирующий наполнитель фиксируют в зоны углубления между наплавленными слоями с последующей лазерной обработкой.

6. Способ по п. 1, отличающийся тем, что в качестве формирующего полости наполнителя выбирают материал с температурой плавления выше температуры плавления подложки и присадочного материала.

7. Способ по п. 1, отличающийся тем, что в качестве формирующего полости наполнителя используют ленту.

8. Способ по п. 1, отличающийся тем, что сканирование лазерного луча производят по эллипсной траектории.

9. Способ по п. 1, отличающийся тем, что сканирование лазерного луча производят по круговой траектории.



 

Похожие патенты:

Изобретение относится к получению стальных деталей, упрочненных под прессом и изготавливаемых из листов, содержащих покрытие на основе алюминия и цинковое покрытие, и обладающих хорошими характеристиками в отношении фосфатирования и, следовательно, хорошим сцеплением с краской.
Изобретение относится к способу ионно-имплантационной обработки лопаток компрессора из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении.
Изобретение относится к способу ионно-имплантационной обработки лопаток рабочего моноколеса компрессора из титановых сплавов. Моноколесо устанавливают на валу держателя.

Изобретение относится к нанесению антифрикционного слоя на металлические поверхности. Металлическую деталь устанавливают на магнитный диск диаметром 300 мм, который вращают со скоростью 50-52 об/ мин или на поворотный стол с диаметром 550 мм, которому сообщают возвратно-поступательное вращение на 180° со скоростью 1500 мм/мин.

Изобретение относится к механической детали пары трения. Деталь пары трения снабжена покрытием из аморфного углерода с по меньшей мере 70 ат.% углерода, исключая содержание водорода, и предназначена для взаимодействия путем скольжения с противоположной деталью, твердость поверхности которой составляет не более двух третей от твердости этого покрытия.
Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом.
Изобретение относится к способу нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения.
Изобретение относится к способу нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы.
Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из титановых сплавов.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, хрома и ниобия при их соотношении, мас.

Изобретение относится к способу послойной лазерной наплавки порошковых материалов на поверхность металлической заготовки, к способам аддитивных технологий для создания поверхностных покрытий с полостями. Способ включает сканирование лазерного луча по подложке, подачу присадочного порошка в ванну расплава и плавление его с получением слоя наплавленного материала. Наплавку каждого последующего слоя проводят перпендикулярно направлению предыдущего слоя, при этом формирующий полости наполнитель укладывают параллельно направлению движения при наплавке. Технический результат изобретения заключается в получении наплавленного покрытия с полостями за счет предварительного нанесения формирующего наполнителя в виде жгута или ленты из углеродного волокна на наплавляемую поверхность подложки в направлении движения с последующей лазерной наплавкой присадочного материала со сканированием излучения по прямой траектории перпендикулярно направлению движения и механического удаления наполнителя по окончании процесса. 8 з.п. ф-лы, 4 ил.

Наверх