Способ получения гелия

Описан способ получения продуктовой фракции гелия (6) из содержащей азот и гелий сырьевой фракции (3). Содержащую азот и гелий сырьевую фракцию (3) частично конденсируют (E1), разделяют на первую обогащенную гелием фракцию (5) и первую обогащенную азотом фракцию (8) и первую из них подвергают дополнительной адсорбционной очистке. Разделение осуществляют в ректификационной колонне (T), на которую первую обогащенную азотом фракцию (8) подают как флегму, и парциальный поток второй обогащенной азотом фракции подают как отпарной газ (12). Количество отпарного газа (12) устанавливают так, чтобы в ректификационной колонне (T) можно было получить третью обогащенную азотом фракцию (20), которая содержит по меньшей мере 30% азота, содержащегося в первой обогащенной азотом фракции (8). Технический результат изобретения состоит в повышении термодинамической эффективности процесса. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к способу получения продуктовой фракции гелия из содержащей азот и гелий сырьевой фракции, согласно которому

- содержащую азот и гелий сырьевую фракцию частично конденсируют и разделяют на первую обогащенную гелием фракцию и первую обогащенную азотом фракцию,

- первую обогащенную гелием фракцию подвергают процессу адсорбционной очистки, и полученная в результате обогащенная гелием фракция является продуктовой фракцией гелия,

- первую обогащенную азотом фракцию разделяют на вторую обогащенную гелием фракцию и вторую обогащенную азотом фракцию, и

- вторую обогащенную гелием фракцию нагревают за счет частично конденсируемой сырьевой фракции, содержащей азот и гелий, сжимают и добавляют в частично конденсируемую, содержащую азот и гелий сырьевую фракцию.

Термин "продуктовая фракция гелия" относится к гелию высокой чистоты, концентрация примесей в котором не превышает значения 100 объемных ч/млн, предпочтительно ниже 10 объемных ч/млн.

Под выражением "содержащая азот и гелий сырьевая фракция" следует понимать фракцию, которая содержит от 1 до 20 моль.% гелия и от 80 до 99 моль.% азота. Кроме того, эта сырьевая фракция может содержать от 0,1 до 2 моль.% метана и следовые количества водорода, аргона и/или других благородных газов.

В настоящее время гелий получают в промышленности почти исключительно из смеси легколетучих компонентов природного газа, которая кроме гелия типично содержит также метан и азот, а также в следовых количествах водород, аргон и другие благородные газы. Чтобы избежать вымораживания нежелательных примесей при сжижении гелия, концентрация этих примесей в гелии не должна превышать значения 100 объемных ч/млн, предпочтительно 10 объемных ч/млн.

Очистка гелия, которая предшествует собственно сжижению гелия, состоит обычно из комбинации криогенного, основанного на частичной конденсации и адсорбционного процессов с регенерацией путем колебаний давления и/или температуры. Из-за довольно высокой стоимости продукта стремятся к как можно более высокому выходу гелия, предпочтительно >99%. Поэтому обогащенную гелием фракцию на криогенной стадии часто переводят из жидкой в газообразную фазу путем сброса давления и/или отпарки, чтобы она оставалась доступной для дальнейшей обработки.

Из патента US 5167125 известен способ, при котором обогащенный азотом поток, находящийся под высоким давлением и содержащий гелий, разделяют с использованием перепада давления на гелийсодержащий поток среднего давления и обогащенный азотом поток низкого давления. Это разделение проводится в ректификационной колонне, которая содержит кипятильник и конденсатор.

Задачей настоящего изобретения является разработать типовой способ получения продуктовой фракции гелия, который позволяет выдавать по меньшей мере часть получаемого при разделении обогащенного азотом потока при том же давлении, что и давление гелийсодержащего потока, чтобы обогащенный азотом поток можно было затем провести, например, на эффективное дросселирование.

Для решения этой задачи предложен типовой способ получения продуктовой фракции гелия, отличающийся тем, что

- разделение первой обогащенной азотом фракции на вторую обогащенную гелием фракцию и вторую обогащенную азотом фракцию проводится в ректификационной колонне, в которую первую обогащенную азотом фракцию подают как флегму,

- парциальный поток второй обогащенной азотом фракции испаряют и подают в ректификационную колонну как отпарной газ,

- по меньшей мере один парциальный поток второй обогащенной азотом фракции при давлении менее 5 бар испаряют за счет частично конденсируемой, содержащей азот и гелий сырьевой фракции,

- из ректификационной колонны отбирают третью обогащенную азотом фракцию,

- причем количество отпарного газа устанавливают так, чтобы третья обогащенная азотом фракция содержала по меньшей мере 30% азота, содержащегося в первой обогащенной азотом фракции, и

по меньшей мере часть третьей обогащенной азотом фракции служит для охлаждения частично конденсируемой, содержащей азот и гелий сырьевой фракции.

Следующие предпочтительные варианты осуществления предлагаемого изобретением способа получения продуктовой фракции гелия, являющиеся объектами зависимых пунктов формулы изобретения, отличаются тем, что

- по меньшей мере часть третьей обогащенной азотом фракции эффективно дросселируется,

- ректификационная колонна работает при давлении от 7 до 20 бар, предпочтительно от 10 до 15 бар,

- третья обогащенная азотом фракция содержит по меньшей мере 50% азота, содержащегося в первой обогащенной азотом фракции,

- по меньшей мере один парциальный поток второй обогащенной азотом фракции испаряют при давлении менее 3 бар за счет частично конденсируемой, содержащей азот и гелий сырьевой фракции, и/или

- процесс адсорбционной очистки проводится по способу (V)PSA и/или TSA (короткоцикловая адсорбция с колебанием давления и/или температуры).

Предлагаемый изобретением способ получения продуктовой фракции гелия, а также другие предпочтительные варианты его осуществления будут подробнее пояснены на примере, проиллюстрированном на фигуре 1.

По линии 1 содержащая азот и гелий сырьевая фракция, которая поступает, например, с процесса разделения природного газа, подается сначала на каталитическое окисление метана A и затем по линии 2 на сушильную установку B. Вода, отделенная в сушильной установке B, отводится по линии 30. Подготовленная таким традиционным способом сырьевая фракция, которая обычно имеет давление от 10 до 40 бар, предпочтительно от 15 до 25 бар, проводится по линии 3 на теплообменник E1 и в нем частично конденсируется за счет технологического газа, который еще будет описан подробнее ниже. По линии 4 частично сконденсированная сырьевая фракция подается на сепаратор D1, в котором она разделяется на первую обогащенную гелием фракцию 5 и на первую обогащенную азотом фракцию 8.

Обогащенная гелием фракция 5 после нагревания в теплообменнике E1 подается на процесс адсорбционной очистки D. Он осуществляется по способу (V)PSA и/или TSA. Полученная в этом процессе обогащенная гелием фракция, отбираемая по линии 6, является продуктовой фракцией гелия, концентрация примесей в которой не превышает значения 100 объемных ч/млн, предпочтительно 10 объемных ч/млн. Как правило, эта продуктовая фракция гелия проводится на не показанный на фигуре 1 процесс сжижения.

Содержащий гелий остаточный газ, отобранный с процесса адсорбционной очистки D, проводится по линии 7 на установку повторного сжатия C, в которой он сжимается до давления подаваемой на каталитическое окисление метана A сырьевой фракции 1 и смешивается с ней по линии 32.

Вышеуказанная первая обогащенная азотом фракция 8 дросселируется в вентиле a и подается в верхнюю часть ректификационной колонны T в качестве флегмы. Ректификационная колонна T предпочтительно работает при давлении от 7 до 20 бар, в частности от 10 до 15 бар. В ней происходит разделение на вторую обогащенную гелием газовую фракцию 9 и вторую обогащенную азотом жидкую фракцию 11. Вторая обогащенная гелием фракция 9 подогревается в теплообменнике E1 за счет частично конденсируемой сырьевой фракции 3 и через регулирующий клапан b также подается в упомянутую установку повторного сжатия C. Туда же дополнительно по линии 31 подается воздух. Содержащийся в воздухе кислород служит в процессе каталитического окисления метана A в качестве окислителя.

Парциальный поток второй обогащенной азотом жидкой фракции 11 превращают в пар в теплообменнике E1 и проводят в ректификационную колонну T как отпарной газ 12. Эта подача отпарного газа инициирует протекающий в ректификационной колонне T процесс разделения и определяет содержание гелия во второй обогащенной гелием фракции 9.

По меньшей мере один парциальный поток второй обогащенной азотом фракции 11 превращают в пар с давлением менее 5 бар, предпочтительно менее 3 бар, в теплообменнике E1 за счет частично конденсируемой сырьевой фракции 3. Целью этого способа действия является установить как можно более низкую температуру в сепараторе D1. В примере осуществления, показанном на фигуре 1, парциальный поток второй обогащенной азотом фракции 11 через регулирующий клапан c подается в циркуляционную емкость D2. Отводимую из нее по линии 14 жидкую фракцию подают при вышеуказанном низком давлении на теплообменник E1, в котором она по меньшей мере частично превращается в пар и снова подается в циркуляционную емкость D2.

Сверху циркуляционной емкости D2 отбирается обогащенная азотом газовая фракция 15, которая нагревается в теплообменнике E1 за счет частично конденсируемой сырьевой фракции 3 и затем проводится как регенерирующий газ на вышеописанную сушильную установку B, в которой обычно осуществляется процесс адсорбционной сушки. По линии 16 этот насыщенный регенерирующий газ выводится из процесса.

Парциальный поток 13 второй обогащенной азотом фракции 11, который не направляют на циркуляционную емкость D2, можно переохладить в теплообменнике E1 и выдавать через регулирующий клапан d и линию 17 как переохлажденную жидкость. Благодаря такой разработке способа согласно изобретению можно отказаться от требующейся в известных случаях иной продукции или от выработки сжиженного азота (LIN).

Альтернативно или дополнительно к показанному на фигуре 1 способу действий парциальный поток жидкой фракции 14, отбираемой из циркуляционной емкости D2, можно отвести вышеописанным способом через регулирующий клапан d и линию 17.

В принципе холод, необходимый для частичной конденсации сырьевой фракции 3, можно обеспечить исключительно путем нагревания холодных газообразных продуктов разделения, а также путем вышеописанного испарения отбираемой из циркуляционной емкости D2 жидкой фракции 14. В принципе справедливо следующее: чем больше количество отпарного газа 12, испаряющегося в теплообменнике E1, тем меньше может быть количество отбираемой из циркуляционной емкости D2 жидкой фракции 14. Правда, необходимо следить, чтобы теплообмен и температура потока 12 подходили для охлаждения и частичной конденсации сырьевой фракции 3. Если доля потока 12 на теплообмен в теплообменнике E1 будет слишком большой, то температура в сепараторе D1 нежелательно повысится.

Кроме того, согласно изобретению количество подаваемого в ректификационную колонну T отпарного газа 12 можно выбрать настолько большим, чтобы из ректификационной колонны T в зоне ее куба можно было отбирать третью обогащенную азотом фракцию 20, причем эта фракция может содержать по меньшей мере 30%, предпочтительно по меньшей мере 50% азота, содержащегося в первой обогащенной азотом фракции 8. Это содержание азота достигается благодаря тому, что в кубе ректификационной колонны T кипит большее количество отпарного газа 12, чем требовалось бы для собственно процесса отпарки в ректификационной колонне T.

В отличие от упомянутого выше способа, описанного в патенте US 5167125, теперь в ректификационной колонне T можно получить дополнительную обогащенную азотом фракцию с высоким давлением. Эту дополнительную, или третью обогащенную азотом фракцию можно после нагревания в теплообменнике E1 сжать до давления, которое на 4-20 бар, предпочтительно на 5-15 бар выше давления в колонне T. После отвода теплоты сжатия в теплообменнике E2 обогащенная азотом фракция 21 охлаждается в теплообменнике E1 и затем эффективно дросселируется в детандере X. Дросселированную, обогащенную азотом фракцию 22 нагревают затем в теплообменнике E1 за счет частично конденсируемой сырьевой фракции 3 и добавляют в вышеописанную обогащенную азотом фракцию 15. Это эффективное дросселирование X, которое повышает термодинамическую эффективность процесса, является факультативным, однако оно позволяет получить или увеличить количество получаемой переохлажденной жидкости (LIN), отбираемой по линии 17.

1. Способ получения продуктовой фракции гелия (6) из содержащей азот и гелий сырьевой фракции (3), где

- содержащую азот и гелий сырьевую фракцию (3) частично конденсируют (E1) и разделяют на первую обогащенную гелием фракцию (5) и первую обогащенную азотом фракцию (8),

- первую обогащенную гелием фракцию (5) подвергают процессу адсорбционной очистки (D), и полученная в результате обогащенная гелием фракция является продуктовой фракцией гелия (6),

- первую обогащенную азотом фракцию (8) разделяют на вторую обогащенную гелием фракцию (9) и вторую обогащенную азотом фракцию (11), и

- вторую обогащенную гелием фракцию (9) нагревают (E1) за счет частично конденсируемой, содержащей азот и гелий сырьевой фракции (3), сжимают (C) и добавляют в частично конденсируемую, содержащую азот и гелий сырьевую фракцию,

отличающийся тем, что

- разделение первой обогащенной азотом фракции (8) на вторую обогащенную гелием фракцию (9) и вторую обогащенную азотом фракцию (11) проводится в ректификационной колонне (T), в которую первая обогащенная азотом фракция (8) подается как флегма,

- парциальный поток второй обогащенной азотом фракции испаряют (E1) и подают в ректификационную колонну (T) как отпарной газ (12),

- по меньшей мере один парциальный поток (11) второй обогащенной азотом фракции при давлении менее 5 бар превращают в пар (E1) за счет частично конденсируемой, содержащей азот и гелий сырьевой фракции (3),

- из ректификационной колонны (T) отводят третью обогащенную азотом фракцию (20),

- причем количество отпарного газа (12) устанавливают таким образом, чтобы третья обогащенная азотом фракция (20) содержала по меньшей мере 30% азота, содержащегося в первой обогащенной азотом фракции (8), и

- по меньшей мере часть третьей обогащенной азотом фракции (20) служит для охлаждения (E1) частично конденсируемой, содержащей азот и гелий сырьевой фракции (3).

2. Способ по п. 1, отличающийся тем, что третья обогащенная азотом фракция (20) по меньшей мере частично дросселируется (X).

3. Способ по п. 1 или 2, отличающийся тем, что ректификационная колонна (T) работает при давлении от 7 до 20 бар, предпочтительно от 10 до 15 бар.

4. Способ по п. 1 или 2, отличающийся тем, что третья обогащенная азотом фракция (20) содержит по меньшей мере 50% азота, содержащегося в первой обогащенной азотом фракции (8).

5. Способ по п. 1 или 2, отличающийся тем, что по меньшей мере одну часть потока (11) второй обогащенной азотом фракции превращают в пар (E1) при давлении менее 3 бар за счет частично конденсируемой, содержащей азот и гелий сырьевой фракции (3).

6. Способ по п. 1 или 2, отличающийся тем, что процесс адсорбционной очистки (D) является процессом (V)PSA и/или TSA (коротковолновая абсорбция с колебанием давления и/или температуры).



 

Похожие патенты:

Изобретение относится к области переработки органических веществ как моносостава, так и сложного состава (сырья), а именно к способу высокотемпературного абляционного пиролиза.

Изобретение относится к установкам низкотемпературной конденсации и может быть использовано в газовой промышленности. Изобретение касается двух вариантов установки, включающих входной сепаратор, дефлегматор, низкотемпературный сепаратор, выветриватель, деметанизатор, деэтанизатор (второй вариант), дебутанизатор, три рекуперационных теплообменника, два холодильника, сепаратор, блоки осушки и очистки, два детандера, два компрессора и два редуцирующих устройства.

Система производства сжиженного природного газа содержит теплообменник, выполненный с возможностью осуществления теплообмена между потоком хладагента и потоком природного газа, для испарения потока хладагента конденсации потока природного газа; компрессор природного газа, охладитель природного газа для охлаждения потока сжатого природного газа до температуры, близкой к температуре окружающей среды, и расширитель природного газа для расширения природного газа после охлаждения.

Изобретение относится к технологическим процессам получения инертных газов и может быть использовано для получения концентрата ксенона и криптона из природного газа, в том числе из попутного нефтяного газа и угольного газа.

Изобретение относится к способам модернизации установок низкотемпературной сепарации природного газа и может быть использовано в газовой промышленности. Предложен способ модернизации установки низкотемпературной сепарации газа, который заключается в установке на линии подачи газа входной сепарации в узел редуцирования дефлегматора, верхняя и нижняя части которого соединены с линией подачи газа низкотемпературной сепарации, а линия вывода флегмы соединена с линией подачи конденсата входной сепарации.

Изобретение относится к хранению сжиженного природного газа (СПГ), в частности к обеспечению сброса паров из резервуара СПГ, и может быть использовано в криогенной газовой промышленности.

Изобретение относится к холодильной технике, а именно к устройствам для разделения газов с помощью обработки холодом, и может быть использовано на нефтяных месторождениях для создания мобильных модульных комплексов для разделения попутного нефтяного газа на газовый конденсат, который может быть компаундирован с минеральной нефтью, и на сухой газ, который может быть транспортирован в магистральный газопровод, либо полезно использован для собственных нужд, либо сожжен на факельной установке.

Раскрыты способ и устройство для компактной установки для обработки для улучшения выделения C2 (или C3) и тяжелых углеводородных компонентов из углеводородного газового потока.

Изобретение относится к способу удаления кислотных газов, прежде всего диоксида углерода и сероводорода, из богатой углеводородом фракции, прежде всего природного газа.

Изобретение относится к установкам низкотемпературной сепарации и может быть использовано в газовой промышленности для разделения природного газа, транспортируемого по магистральным газопроводам.
Наверх