Голографический способ определения характеристик оптических систем: фокусных расстояний и фокальных отрезков

Изобретение относится к оптическому приборостроению и может быть использовано в оптических системах наблюдения, регистрации изображений, оптических измерительных системах, голографических системах, при проведении испытаний оптических систем для определения бесконтактным методом характеристик оптических систем, а именно фокусных расстояний и фокальных или рабочих отрезков. Заявленный способ характеризуется тем, что регистрируют изображения тест-объекта в нескольких его положениях, измеряют расстояние между этими положениями и линейное увеличение для каждого положения тест-объекта, отличается тем, что выбирают не менее четырех различных положений тест-объекта, для каждого положения последовательно регистрируют цифровые голограммы изображения тест-объекта при неизменном положении плоскости регистрации в пространстве изображений, а размеры изображений тест-объектов и их положения определяют посредством численного восстановления из голограмм изображений (виртуальных измерительных наводок). Даны формулы для определения характеристик оптических систем: фокусных расстояний, фокальных отрезков, рабочих отрезков. Технический результат – повышение оперативности и расширение функциональных возможностей способа. 1 ил.

 

Изобретение относится к оптическому приборостроению и может быть использовано в оптических системах наблюдения, регистрации изображений, оптических измерительных системах, голографических системах и при проведении испытаний оптических систем для определения бесконтактным методом характеристик оптических систем, а именно фокусных расстояний и фокальных или рабочих отрезков.

Известен способ измерения фокусных расстояний оптических систем основанный на методе увеличения [1]. В соответствии с методом увеличения для измерения фокусных расстояний объективов производят посредством измерительных наводок (продольных и поперечных) наблюдение или регистрацию изображения тест-объекта, расположенного в бесконечности. Затем проводят сравнение размеров изображения и тест-объекта, вычисление увеличения и фокусного расстояния оптической системы с использованием значения фокусного расстояния коллиматорного объектива, формирующего изображение тест-объекта в бесконечности.

Недостатками способа являются следующие моменты:

- использование значения фокусного расстояния коллиматора в качестве параметра, сказывающегося на точности контроля,

- невозможность измерения иных характеристик оптической системы, в частности положений главной плоскости, фокального или рабочего отрезка в одном измерительном эксперименте,

- необходимость осуществления прецизионных измерительных наводок.

Наиболее близким по технической сущности к заявляемому техническому решению (прототипом) является известный метод Аббе [2, стр. 294], в котором для повышения точности измерений по методу увеличения используют наблюдение и регистрацию изображений тест-объекта в двух его положениях. Для определения фокусного расстояния объектива нужно измерить линейное увеличение системы при двух положениях тест-объекта и расстояние между этими двумя положениями посредством выполнения измерительных наводок. Однако для нахождения главных плоскостей системы недостаточно знать фокусное расстояние, нужно еще определить положения главных фокусов. Это делается в дополнительном оптическом эксперименте по измерению фокального отрезка на оптической скамье [2, стр. 296]. Фокальный отрезок определяется по результатам продольных измерительных наводок микроскопа на вершину последней поверхности измеряемой оптической системы и на изображение тест-объекта, расположенного в бесконечности. Способ не позволяет получить все характеристики оптической системы в одном эксперименте.

Задачей изобретения является разработка более оперативного способа, позволяющего выполнить измерения параметров объектива в одном измерительном эксперименте без использования априорных параметров, влияющих на погрешность измерений и без физического осуществления прецизионных измерительных наводок.

Технический результат - повышение оперативности и расширение функциональных возможностей способа.

Технический результат достигается тем, что согласно предлагаемому способу определения характеристик оптических систем, как и в прототипе, регистрируют изображения тест-объекта в нескольких его положениях, измеряют расстояния между этими положениями посредством выполнения измерительных наводок и находят линейное увеличение для каждого положения тест-объекта. В отличие от прототипа, выбирают не менее четырех различных положений тест-объекта, для каждого положения последовательно регистрируют цифровые голограммы изображений при неизменном положении плоскости регистрации в пространстве изображений, а размеры изображений тест-объектов и их положения определяют путем численного восстановления из голограмм изображений тест-объекта (т.е. посредством виртуальных измерительных наводок). При выборе начала отсчета от вершин оптических поверхностей переднее и заднее фокусные расстояния f и f' оптической системы, передний и задний фокальные отрезки SF, рассчитывают по формулам (здесь и далее для определенности предполагается случай четырех положений тест-объекта):

где:

- расстояния от вершины первой оптической поверхности (индекс в) до первого и второго положений тест-объекта;

- расстояния от вершины последней оптической поверхности (индекс в'')до изображений тест-объекта в третьем и четвертом положениях, полученные в результате продольных виртуальных наводок;

β1, β2, β3, β4 - увеличения для первого, второго, третьего и четвертого положений тест- объекта, полученные в результате поперечных виртуальных измерительных наводок.

При выборе начала отсчета от опорного торца объектива переднее и заднее фокусные расстояния f и f' оптической системы, передний и задний рабочие (индекс р) отрезки Sp, рассчитывают по формулам:

где:

- расстояния от опорного торца объектива в пространстве предметов до первого и второго положений тест-объекта;

, - расстояния от опорного торца объектива в пространстве

изображений до изображений тест-объекта в третьем и четвертом положениях, полученные в результате продольных измерительных наводок;

β1, β2, β3, β4 - увеличения для первого, второго, третьего и четвертого положений тест-объекта, полученные в результате поперечных виртуальных измерительных наводок.

Сущность изобретения и возможность его промышленного применения поясняется примером конкретной реализации и иллюстрируется прилагаемой схемой (фиг. 1), где Н,Н' - передняя и задняя главные плоскости оптической системы, F, F' - передний и задний фокусы оптической системы, SF, - передний и задний фокальные отрезки, O,O' - вершины оптических поверхностей, SH, - отрезки, задающие положение главных плоскостей Н,H' относительно вершин первой и последней оптических поверхностей O,O' соответственно, t и t' - произвольные плоскости в пространстве предметов и изображений соответственно, относительно которых отсчитываются положения тест-объекта и его изображений, М - плоскость положения матрицы цифровой голографической камеры.

Для габаритного расчета оптических систем необходимыми являются такие оптические характеристики, как переднее и заднее фокусные расстояния f и f', передний и задний фокальные (или рабочие) отрезки SF, , отрезки, задающие положение главных плоскостей SH, . Эти параметры оптических систем одинаково важны, но не всегда достоверно известны.

Рассмотрим иллюстрирующую схему и приведем необходимые для использования способа расчеты. Обычно при выводе формулы Ньютона предполагается, что отсчет отрезков х в пространстве предметов и x в пространстве изображений производится от переднего F и заднего F' фокусов соответственно (см. например, [2, стр. 532]). Поскольку в оптическом эксперименте положение фокусов а также величины переднего f и заднего фокусных расстояний f' оптической системы не всегда известны, запишем формальные формулы идеальной оптической системы для случая произвольного начала отсчета координат, как в пространстве предметов, так и в пространстве изображений.

На схеме положение плоскости t, определяющей положение начала отсчета в пространстве предметов, задается отрезком х0, отложенным от передней фокальной плоскости (плоскости перпендикулярной оптической оси и проходящей через передний фокус F). Положение плоскости t', задающей начало отсчета в пространстве изображений, задается отрезком , отложенным от задней фокальной плоскости (плоскости перпендикулярной оптической оси и проходящей через задний фокус F'). Расположим в плоскости М матрицу цифровой голографической камеры, которую используем для регистрации цифровой голограммы Габора пространства изображений, считая соблюденными все условия, необходимые для регистрации голограммы, в частности, считая согласованными размеры матрицы и поля зрения в пространстве изображений. Эти вопросы более подробно изложены в [2, стр. 496]. Там же, приведено описание подобной системы.

Пусть i - ый тест-объект размером yi задается отрезком в пространстве предметов. Тогда для отрезка xi, задающего положение этого тест-объекта относительно переднего фокуса, можем записать очевидное из схемы соотношение:

Точно так же для пространства изображений:

где - отрезок, задающий положение изображения i-го тест-объекта относительно задней фокальной плоскости, - отрезок, задающий положение этого изображения относительно плоскости t'. Размер изображения по определению увеличения βi оптической системы.

По формуле Ньютона можно записать:

причем в общем случае f≠-f', поскольку в пространстве предметов может быть и иная среда, и иллюминатор, т.е. иная оптическая система.

Для увеличения βi, с учетом (1) и подобия треугольников, имеем:

С учетом (2) и подобия треугольников:

Подставляя соотношения (1) и (2) в (3), получим формулу Ньютона при произвольных положениях начал отсчета х0 и :

В качестве примера конкретного выполнения покажем, каким образом в одном измерительном эксперименте, с использованием техники цифровой голографии и соотношений (1)-(4), могут быть определены значения переднего и заднего фокусных расстояний, а также переднего и заднего фокальных отрезков. Для этого, в соответствии с формулой изобретения, выберем 4 различных положения для предметов в пространстве изображений, заданных отрезками от начала отсчета, в качестве которого в данном случае для пространства предметов используется вершина первой оптической поверхности, для пространства изображений - вершина последней оптической поверхности (то есть х0=SF и ). Пусть размеры предметов составляют у1, у2, у3, у4. Если на матрицу записана голограмма объема пространства изображений, то при численном восстановлении [3] определятся величины изображений и расстояния от матрицы, пересчитанные в расстояния от вершинной поверхности Используя определение увеличения, рассчитаем β1, β2, β3, β4 по заданным у1, у2, у3, у4 и измеренным . Здесь рассмотрен случай четырех произвольных объектов, в реальных измерительных ситуациях используется один и тот же тест-объект для различных положений, что упрощает вычисление увеличений, которые, тем не менее, будут различными для различных положений тест-объекта. Поэтому полученные формулы, очевидно, верны для случая, включенного в формулу изобретения.

Для объектива нам неизвестны фокусные расстояния f и f', а также отрезки х0=SF и , от двух плоскостей отсчета: касательной плоскости к вершине первой поверхности и касательной плоскости к вершине последней поверхности. Используя соотношение (4) для первого и второго тест-объектов, получим систему двух уравнений

Решая ее относительно неизвестных f и SF, получим формулы для их определения:

Запишем аналогичную систему для пространства изображений, используя формулу (5):

Решая ее относительно неизвестных f' и , получим

Значения SH, . находятся по значениям f и f' и SF, , определенным из (7), (8), (9), (10) с использованием известных и очевидных соотношений.

Если принять за начало отсчета (т.е. за положение плоскостей t и t') опорный торец объектива в пространстве предметов и в пространстве изображений, а отсчет отрезков вести от этих опорных плоскостей, то для рабочих отрезков легко получить соотношения, аналогичные (8) и (10).

Передний и задний рабочие отрезки Sp, рассчитывают по формулам:

где: - расстояния от опорного торца оправы в пространстве предметов до первого и второго положений тест-объекта;

- расстояния от опорного торца оправы в пространстве изображений до изображений тест-объекта в третьем и четвертом положениях, полученные в результате продольной виртуальной измерительной наводки,

β1, β2, β3, β4 - увеличения для первого, второго, третьего и четвертого положений тест-объекта, полученные в результате поперечных виртуальных измерительных наводок.

При выборе более четырех различных положений тест-объекта рассуждения и выкладки аналогичны.

Предлагаемый способ позволяет определить характеристики оптических систем: фокусные расстояния и фокальные (рабочие) отрезки в одном измерительном эксперименте без физического осуществления прецизионных измерительных наводок.

Список использованных источников:

1. ГОСТ 13095-82 Объективы. Методы измерения фокусного расстояния.

2. Демин В.В., Половцев И.Г., Симонова Г.В. Оптические измерения: учеб. пособие в 2 т. / под ред. И.В. Самохвалова. - Томск: Издательский Дом ТГУ, 2014. - Т. 1. - 580 с.

3. Демин В.В., Каменев Д.В. Методы обработки и извлечения информации из цифровых голограмм частиц и их практическое применение // Известия высших учебных заведений. Радиофизика. - 2014. - Т. 57, №8-9. - С. 597-607.

Голографический способ определения характеристик оптических систем: фокусных расстояний и фокальных отрезков, при котором регистрируют изображения тест-объекта в нескольких его положениях, измеряют расстояние между этими положениями и линейное увеличение для каждого положения тест-объекта, отличающийся тем, что выбирают не менее четырех различных положений тест-объекта, для каждого положения последовательно регистрируют цифровые голограммы изображения тест-объекта при неизменном положении плоскости регистрации в пространстве изображений, а размеры изображений тест-объекта и их положения определяют путем виртуальных измерительных наводок (численного восстановления из голограмм изображений), при этом при выборе начала отсчета от оптических поверхностей переднее и заднее фокусные расстояния оптической системы, передний и задний фокальные отрезки рассчитывают по формулам:

,

,

где - расстояния от вершины первой оптической поверхности до первого и второго положений тест-объекта, полученные в результате продольной виртуальной измерительной наводки; - расстояния от вершины последней оптической поверхности до изображений тест-объекта в третьем и четвертом положениях, полученные в результате продольной виртуальной измерительной наводки; - увеличения для первого, второго, третьего и четвертого положений тест-объекта, полученные в результате поперечных виртуальных измерительных наводок;

при выборе начала отсчета от опорного торца объектива переднее и заднее фокусные расстояния оптической системы, передний и задний рабочие отрезкирассчитывают, по формулам:

,

,

где - расстояния от опорного торца объектива в пространстве предметов до первого и второго положений тест-объекта, полученные в результате продольной виртуальной измерительной наводки; - расстояния от опорного торца объектива в пространстве изображений до изображений тест-объекта в третьем и четвертом положениях, полученные в результате продольной виртуальной измерительной наводки.



 

Похожие патенты:

Изобретение относится к области формирования голографических изображений, в частности к голографическому дисплею и способу формирования голографического изображения посредством голографического дисплея.

Изобретение относится к технологиям панорамного видеонаблюдения. Техническим результатом является обеспечение возможности одновременного независимого панорамного видеонаблюдения различных участков панорамы с различным увеличением несколькими операторами.

Изобретение относится к области применения индивидуальной защиты (скрытности) объектов на основе формирования голографического изображения реального фона без объекта от оптико-электронных приборов малогабаритных беспилотных летательных аппаратов (МБЛА), может быть использовано в военной технике.

Изобретение относится к проектору и способу голографического восстановления кадров. .

Изобретение относится к измерительной технике. .

Изобретение относится к голографической реконструкции трехмерных сцен. .

Изобретение относится к области оптических изображений, полученных из голограмм. .

Изобретение относится к устройствам для получения оптических изображений из голограмм и может быть использовано в качестве прицела для ручного оружия. .
Изобретение относится к клеящим веществам, а конкретнее к способам производства термочувствительных клеевых композиций. .

Изобретение относится к области автоматизированных систем для длительного испытания узлов лазерных систем. Изобретение представляет собой станцию для оценки времени жизни тестируемого каскада усиления волоконного лазера, включающую задающий лазер для генерации лазерных импульсов, оптоволокно для передачи лазерных импульсов, первый предусилитель для усиления импульсов из задающего лазера и увеличения соотношения сигнала к шуму, акустооптический модулятор для управления частотой следования импульсов, второй предусилитель для усиления сигнала до уровня сигнала одного волоконного усилителя из каскада усиления, третий предусилитель для усиления сигнала до уровня нескольких волоконных усилителей из каскада усиления, разветвитель для деления сигнала из третьего предусилителя в равном соотношении и передачи его в тестируемые волоконные усилители, диоды накачки, создающие инверсную населенность в тестируемых волоконных усилителях, подключенные через электрические контакты к источникам тока, ответвители мощности с фотодиодами, которые служат для ответвления небольшой доли мощности на измерительные фотодиоды, АЦП, осуществляющий оцифровку сигнала с измерительных фотодиодов, и передающий сигнал на компьютер с управляющей программой, при этом станция включает управляющую плату, осуществляющую изменение параметров перечисленных устройств и сбор данных, а также блок данных.

Изобретение относится к оптико-электронному приборостроению и предназначено для автоматизированного измерения параметров тепловизионных каналов (ТПВК) в процессе изготовления.

Изобретение относится к оптико-электронному приборостроению и предназначено для автоматизированного измерения параметров тепловизионных каналов (ТПВК). Техническим результатом изобретения является расширение функциональных возможностей стенда за счет обеспечения возможности автоматизированного измерения параметров ТПВК, при которых необходимо выполнять изменение и измерение значения углов поворота и наклона оптической оси ТПВК относительно оптической оси ИКК.
Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения потерь оптической мощности в разъемных соединениях оптических волокон.

Способ калибровки дисторсии видеоканала, содержащего объектив и матричный приемник изображения, в котором видеоканал закрепляют перед коллиматором, в параллельном пучке между видеоканалом и объективом коллиматора помещают воздушно-зеркальный клин (ВЗК), который формирует веер эквидистантных коллимированных пучков с угловым расстоянием между соседними пучками, равным удвоенному углу клина.

Изобретение относится к области оптики и касается способа определения волновых аберраций. При осуществлении способа направляют гомоцентрический световой пучок с длиной волны λ на оптическую систему.

Изобретение относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств (аппаратуры), а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство.

Изобретение относится к области контрольно-измерительной техники импульсных лазерных дальномеров. Универсальная установка для проверки лазерного дальномера (ЛД) содержит ослабитель мощности лазерных импульсов проверяемого ЛД, устройство формирования стартового импульса, устройство сопряжения, персональный компьютер (ПК), источник питания лазерного излучателя, параболическое зеркало, визуализатор, телевизионную камеру, сопряженную с ПК и визуализатором, светодиод с диафрагмой, лазерные диоды с оптическими ослабителями излучения для длин волн λ1 и λ2, цифровую плату, сопряженную с лазерными диодами и ПК, блок фотоприемников с ослабителями, телескопическую систему, зеркальный шарнир, измеритель энергии излучения, сопряженный с ПК, осциллограф.

В настоящем изобретении раскрыты способы и устройство для подготовки офтальмологической линзы с изменяемой оптической силой. Вставка с изменяемыми оптическими свойствами может иметь поверхности с различными радиусами кривизны.

Изобретение относится к методам обеспечения стойкости электронной бортовой аппаратуры. Сущность изобретения заключается в том, что способ оценки частоты одиночных радиационных эффектов, а именно сбоев и отказов, в бортовой аппаратуре космических аппаратов содержит этапы, на которых дискретные зависимости дифференциальных спектров плотности потоков заряженных частиц космического пространства с помощью компьютерной алгебры преобразуют в непрерывные зависимости, вклад в частоту одиночных радиационных эффектов при известных зависимостях сечений одиночных радиационных эффектов от энергетических характеристик частиц для изделий электронной техники определяют с помощью компьютерной алгебры, для определения верхней оценки вклада в частоту одиночных радиационных эффектов при неизвестных зависимостях сечений одиночных радиационных эффектов от энергетических характеристик частиц по полученным непрерывным зависимостям дифференциальных спектров плотности потоков частиц с помощью компьютерной алгебры определяют значения соответствующих интегральных спектров плотности потоков заряженных частиц для пороговых значений энергетических характеристик частиц для эффектов сбоев и отказов, определяют сумму вкладов в частоты видов одиночных радиационных эффектов в бортовой аппаратуре космических аппаратов.
Наверх