Способ лазерной обработки неметаллических пластин



Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
H01L21/3247 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2691923:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова" (ФГУП "ВНИИА") (RU)

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения, осуществляют предварительный нагрев пластины до определенной температуры. Технический результат - исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных пластин. 1 ил.

 

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Известен способ лазерной обработки, в частности используемый для лазерного отжига неметаллических пластин, заключающийся в облучении поверхности пластины с плотностью энергии, определяемой по уравнению

,

где Wf – плотность энергии лазерного излучения, требуемая для нагрева поверхности пластины до температуры отжига;

Tf – температура отжига пластины;

T0 – начальная температура пластины;

с и γ – удельная теплоемкость и плотность материала пластины соответственно;

R – коэффициент отражения материала пластины;

χ – показатель поглощения материала пластины на длине волны лазерного излучения.

Коваленко А. Ф. Неразрушающие режимы импульсного лазерного отжига стеклянных и керамических пластин // Стекло и керамика. 2006. №7. С. 31-33.

Недостатком указанного способа является то, что он не позволяет исключить режимы воздействия, при которых возможно разрушение пластин термоупругими напряжениями, и повысить выход годных пластин в процессе лазерной обработки.

Известен также способ лазерной обработки неметаллической пластины, заключающийся в предварительном нагреве пластины до температуры, определяемой по уравнению

,

где σР – предел прочности материала пластины на растяжение;

ν – коэффициент Пуассона материала пластины;

h – толщина пластины;

Е – модуль Юнга;

αТ – коэффициент линейного расширения материала пластины;

е – основание натурального логарифма,

и облучении её поверхности импульсом лазерного излучения с плотностью энергии, определяемой по уравнению

.

Патент РФ на изобретение № 2602402, МПК H01L 21/428, 20.11.2016.

Недостатком указанного способа является то, что он применим только в том случае, когда поверхность пластины полностью накрывается лазерным излучением. В практике есть случаи, когда необходим лазерный отжиг только центральной части пластины, например, после ионной имплантации. Если радиус лазерного пучка меньше радиуса обрабатываемой пластины, термоупругие напряжения в ней описываются другими уравнениями, и указанный способ применять нельзя.

Известен также способ лазерного отжига неметаллических пластин, заключающийся в облучении центральной части пластины лазерным пучком, плотность энергии в котором определяют по уравнению

,

а диаметр лазерного пучка меньше диаметра пластины.

Коваленко А. Ф. Лазерный импульсный отжиг стеклянных пластин при частичном их накрытии излучением. Стекло и керамика. 2018. № 2. С. 27–31. Этот способ выбран в качестве прототипа.

Недостатком указанного способа является то, что он не позволяет исключить режимы воздействия, при которых возможно разрушение пластин термоупругими напряжениями, и повысить выход годных пластин в процессе лазерной обработки.

Техническим результатом изобретения является исключение разрушения пластин из полупроводниковых, керамических и стеклообразных материалов термоупругими напряжениями в процессе лазерного отжига и повышение выхода годных пластин.

Технический результат достигается тем, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, определяемой по уравнению

,

где Tf – температура отжига пластины;

T0 – начальная температура пластины;

с и γ – удельная теплоемкость и плотность материала пластины соответственно;

R – коэффициент отражения материала пластины;

χ – показатель поглощения материала пластины на длине волны лазерного излучения,

и диаметром лазерного пучка меньше диаметра пластины, осуществляют предварительный нагрев пластины до температуры, определяемой по уравнению

,

где σР – предел прочности материала пластины на растяжение;

ν – коэффициент Пуассона материала пластины;

Е – модуль Юнга;

αТ – коэффициент линейного расширения материала пластины;

;

– безразмерный радиус лазерного пучка;

rp – радиус пучка лазерного излучения на пластине;

- радиус пластины;

h – толщина пластины;

е – основание натурального логарифма.

Ниже приводится более подробное описание заявляемого способа лазерной обработки неметаллических пластин со ссылкой на чертёж.

Рассмотрим пластину толщиной h и радиусом Rpl, ограниченную плоскостями ±h/2. На плоскость –h/2 воздействует пучок лазерного излучения радиусом rp. Будем считать пластину термопрочной, если её поверхность можно нагреть одиночным импульсом лазерного излучения до температуры отжига. Оси пластины и лазерного пучка совпадают, что позволяет рассматривать задачу термоупругости в цилиндрических координатах. Ограничимся длительностью импульса лазерного излучения ~10-2<τ<10-6 c, когда охлаждением поглощающего слоя за счёт теплопроводности за время действия лазерного импульса и динамическими эффектами можно пренебречь [Коваленко А.Ф. Лазерный импульсный отжиг стеклянных пластин при частичном их накрытии излучением. Стекло и керамика. 2018. № 2. С. 27–31]. Потери за счёт конвективного теплообмена и переизлучения по закону Стефана-Больцмана за время действия лазерного импульса будут также пренебрежимо малы. Будем считать свойства материала пластины независимыми от температуры. Тогда температурное поле в пластине в момент окончания лазерного импульса будет описываться соотношением

(1)

где Т(z,r) – температура;

z – координата;

r – текущий радиус;

Т0 – начальная температура пластины;

R – коэффициент отражения материала пластины;

χ – показатель поглощения материала пластины на длине волны лазерного излучения;

с и γ – удельная теплоёмкость и плотность материала пластины соответственно;

– плотность энергии лазерного излучения;

q – плотность мощности лазерного излучения;

t – время;

τ – длительность лазерного импульса;

h – толщина пластины.

Под действием температурного поля, изменяющегося по толщине и радиусу пластины, в ней возникают термоупругие напряжения, которые приближённо можно представить суммой напряжений плоского напряжённого состояния и напряжений изгиба [Коваленко А.Ф. Лазерный импульсный отжиг стеклянных пластин при частичном их накрытии излучением. Стекло и керамика. 2018. № 2. С. 27–31] соответственно:

(2)

(3)

(4)

(5)

(6)

где σr(ρ,z), σθ(ρ,z) – термоупругие напряжения;

– напряжения плоского напряженного состояния;

– напряжения изгиба;

ρ=r/Rpl – безразмерный радиус;

E – модуль Юнга;

ν – коэффициент Пуассона;

αТ – средний в интервале температур коэффициент линейного расширения материала пластины.

Уравнения (2)–(6) справедливы для тонких пластин, для которых отношение толщины к диаметру составляет менее 0,5. Естественно предположить, что термоупругие напряжения в пластине будут максимальными в момент окончания действия лазерного импульса, когда градиент температуры максимален. Подставив (1) в (3)–(6) и выполнив математические преобразования с учётом (2), получим соотношения для термоупругих напряжений в пластине:

(7)

(8)

где rp – радиус пятна лазерного излучения на пластине;

– безразмерный радиус пятна.

Исследования уравнений (7) и (8) показывают, что напряжения σr и σθ имеют максимальные значения в сечении z=-h/2. Напряжения σr являются сжимающими и уменьшаются от максимального значения в области максимальных температур до нуля при r=Rpl. Напряжения σθ являются сжимающими при r≤rp. При r>rp они являются растягивающими, скачком возрастают до максимального значения, а затем уменьшаются, оставаясь растягивающими.

Из (8) получим соотношения для максимальных растягивающих напряжений на поверхности z=-h/2

(9)

Из (9) определим плотность энергии лазерного излучения, вызывающую разрушение пластины термоупругими напряжениями

(10)

где σВ – предел прочности материала пластины на растяжение.

Плотность энергии, требуемая для достижения облучаемой поверхностью пластины температуры фазового перехода, определяется из (1) и составляет

(11)

Разделив (10) на (11) и поставив условие WT/Wf ≥1, получим критерий термопрочности пластины

(12)

Левая часть неравенства (12) является константой, характеризующей свойства материала пластины, правая часть – функцией двух безразмерных параметров χh и ρp. Анализ показывает, что функция f(χh,ρp,) является нелинейной и убывающей. Увеличение ρp однозначно приводит к увеличению функции f(χh,ρp). Неравенство (12) является условием термопрочности пластины и позволяет определить неразрушающие режимы импульсного лазерного отжига в рамках квазистатической задачи термоупругости. Анализ целесообразно проводить для пластины из конкретного материала. В качестве примера на чертеже представлено графическое решение неравенства (12) для пластины из оптического стекла ЛК3 при ρp =0,5. Видно, что условие термопрочности пластины выполняется при χh≥10. При меньших значениях χh условие термопрочности не выполняется и пластина будет разрушена термоупругими напряжениями. Для предотвращения разрушения пластины термоупругими напряжениями необходимо повысить её начальную температуру. Из уравнение (12) найдем значение температуры Т0, обеспечивающей выполнение критерия термопрочности пластины

, (13)

где .

Нагрев пластины осуществляют в муфельной печи до требуемой температуры Т0 и выдерживают необходимое время для выравнивания температуры по толщине пластины. Время выдержки определяют из критерия Фурье, определяющего тепловую инерцию пластины

(14)

где а – коэффициент температуропроводности материала пластины;

tB – время выдержки пластины в муфельной печи.

Пример осуществления способа. Необходимо провести лазерный отжиг поверхности пластины из оптического стекла НС12 диаметром 4 см и толщиной 0,5 см. Диаметр лазерного пучка составляет 2 см. Показатель поглощения данной марки стекла для излучения с длиной волны 1,06 мкм составляет 17 см-1 [ГОСТ 9411-90. Стекло цветное оптическое. М.: Изд-во стандартов. 1992. – 48 с.]. Безразмерный параметр χh = 8,5. Начальную температуру пластины примем равной 300 К, температуру отжига – 820 К. Расчет по уравнению (11) показывает, что для отжига пластины потребуется плотность энергии в лазерном импульсе 52 Дж/см2. Расчет по уравнению (10) показывает, что для разрушения термоупругими напряжениями пластины требуется плотность энергии 43 Дж/см2, то есть меньше, чем для отжига. Рассчитаем левую и правую части критерия термопрочности (12). Правая часть неравенства (10) при χh = 8,5 и ρp=0,5 составляет 0,195. Левая часть неравенства (10) составляет 0,177. Видно, что критерий термопрочности не выполнен. Пластина будет разрушена термоупругими напряжениями. Чтобы этого не произошло, необходимо пластину предварительно нагреть в муфельной печи до температуры не менее 348 К и выдержать при этой температуре не менее 125 секунд для выравнивания температуры по толщине пластины. Расчеты выполнены по уравнениям (13) и (14) при следующих исходных данных: σР = 70 МПа, Е = 80 ГПа, ν = 0,2, αТ = 7,6·10-6 К-1, а = 6·10-3 см2/с. Затем воздействуют на пластину лазерным импульсом с плотностью энергии 51 Дж/см2. Расчеты проведены по уравнению (11) для нового значения Т0 = 350 К. Температура поверхности пластины при этом достигает температуры отжига, а термоупругие напряжения не превысят предела прочности материала.

Таким образом, реализация предложенного способа лазерной обработки неметаллических пластин приводит к исключению их разрушения термоупругими напряжениями в процессе лазерного отжига и повышению выхода годных пластин.

Способ лазерной обработки неметаллических пластин, заключающийся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, определяемой по уравнению

,

где Tf – температура отжига пластины;

T0 – начальная температура пластины;

с и γ – удельная теплоемкость и плотность материала пластины соответственно;

R – коэффициент отражения материала пластины;

χ – показатель поглощения материала пластины на длине волны лазерного излучения,

и диаметром лазерного пучка меньше диаметра пластины, отличающийся тем, что осуществляют предварительный нагрев пластины до температуры, определяемой по уравнению

,

где σР – предел прочности материала пластины на растяжение;

ν – коэффициент Пуассона материала пластины;

E – модуль Юнга;

αТ – коэффициент линейного расширения материала пластины;

;

– безразмерный радиус лазерного пучка;

rp – радиус пучка лазерного излучения на пластине;

– радиус пластины;

h – толщина пластины;

e – основание натурального логарифма.



 

Похожие патенты:

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение может быть использовано для лазерного пробития сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Способ обработки неметаллических пластин согласно изобретению заключается в облучении их поверхности лазерным импульсом с минимальной расходимостью.

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике. Cпособ получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, при этом в соответствии с изобретением, эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл, с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла.

Изобретение относится к криоэлектронике и может быть использовано при изготовлении высокотемпературной сверхпроводниковой (ВТСП) толстопленочной схемы. .

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Использование: для изготовления полупроводниковых приборов. Сущность изобретения заключается в том, что устройство для отделения от подложки композитной структуры на основе полупроводниковой пленки содержит оправку для крепления композитной структуры с эпитаксиальной полупроводниковой пленкой, жестко связанной посредством жертвенного слоя с ростовой подложкой, и прикрепляемой к оправке со стороны композитной структуры, средства изгибания композитной структуры для облегчения травления жертвенного слоя и отделения от подложки композитной структуры с эпитаксиальной полупроводниковой пленкой в резервуаре, заполняемом травителем, при этом оправка выполнена в виде мембраны-носителя с одной плоской торцевой поверхностью, предназначенной для крепления композитной структуры, а второй – криволинейной - для изгиба композитной структуры, с толщиной, уменьшающейся в направлении от центра к периферии мембраны-носителя, и со сквозными отверстиями, с диаметром отверстий и распределением их по площади торцевой поверхности с увеличением их плотности от центра к периферии, в совокупности обеспечивающими равномерность прижима и сохранность композитной структуры, средства изгибания выполнены в составе основания, дренажной трубки, упора, гофрированного сильфона, мембраны-носителя, при этом в центральной части основания сформировано сквозное отверстие, в котором с одной стороны основания герметично закреплена дренажная трубка, а с другой - упор, состоящий из полой ножки и соединенной с ней выпуклой крышки, ножка упора герметично закреплена в отверстии основания и снабжена в боковой части сквозным отверстием, мембрана-носитель криволинейной поверхностью ориентирована к стороне основания, относительно которой в отверстии закреплен упор, и установлена своей центральной частью относительно упора с зазором, устраняемым при закреплении и изгибании композитной структуры на мембране-носителе, между мембраной-носителем и основанием расположен герметично соединенный с ними гофрированный сильфон с возможностью формирования ограниченного основанием, сильфоном и мембраной-носителем рабочего объема устройства, с возможностью изменения в нем давления посредством отверстия в упоре и дренажной трубки для закрепления композитной структуры к мембране-носителю за счет сквозных отверстий мембраны-носителя и изгибания закрепленной композитной структуры и мембраны-носителя, жесткость сильфона пренебрежимо мала по сравнению с жесткостью мембраны-носителя.

Изобретение относится к технологии получения полупроводниковых материалов, а именно к получению пластин монокристалла широкозонного нитрида галлия (GaN) с гексагональной кристаллической решеткой.

Изобретение относится к устройству для нанесения жидкой среды, подвергаемой ультрафиолетовому облучению, на подложку. Целью изобретения является расширение области с равномерной концентрацией радикалов на поверхности подложки.

Изобретение относится к устройству для нанесения жидкой среды, подвергаемой ультрафиолетовому облучению, на подложку. Устройство содержит: кожух, имеющий продолговатую камеру, по меньшей мере одно впускное отверстие, которое открыто в камеру, и по меньшей мере одно щелевое выпускное отверстие, противоположное впускному отверстию, которое проходит по длине камеры.

Способ изготовления полупроводникового устройства включает в себя нанесение проводящей пасты, содержащей металлические частицы, на заданную область в электродной пластине, включающей в себя выемку на поверхности электродной пластины, причем заданная область находится рядом с выемкой, размещение полупроводниковой микросхемы на проводящей пасте так, чтобы внешний периферийный край полупроводниковой микросхемы располагался над выемкой, размещение оправки в положении над выемкой и вблизи внешнего периферийного края полупроводниковой микросхемы с обеспечением зазора между оправкой и внешней периферийной частью электродной пластины, которая представляет собой часть, расположенную дальше во внешней периферийной стороне, чем выемка, и затвердевание проводящей пасты путем нагревания проводящей пасты при приложении давления к полупроводниковой микросхеме в направлении электродной пластины.

Изобретение относится к материаловедению полупроводников и предназначено для контроля качества выращиваемых гетероэпитаксиальных слоев теллурида кадмия-ртути CdHgTe кристаллографической ориентации (310) при отработке процесса молекулярно-пучковой эпитаксии (МПЭ) для выявления различных типов дислокаций в слоях структур CdHgTe.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной плотностью дефектов.

Изобретение относится к области нагревательных устройств и может быть использовано для регулирования температуры обработки полупроводниковой пластины в процессе выращивания полупроводникового слоя.

Использование: для создания фильтрующего элемента с датчиком измерения перепадов давления. Сущность изобретения заключается в том, что фильтрующий элемент содержит основное тело, причем на основном теле размещен датчик для измерения перепадов давления, причем указанный датчик содержит электронный чип и сенсорный чип, расположенные внутри функционального объема, который имеет длину максимум 4-5 мм, ширину максимум 2-3 мм и высоту максимум 0,5-0,8 мм.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение предлагает способ изготовления тонкой пленки низкотемпературного поликристаллического кремния, включающий этап выращивания слоя аморфного кремния, этап первоначального выращивания слоя оксида кремния на слое аморфного кремния, затем формирование некоторого множества вогнутых поверхностей на слое оксида кремния, которые будут отражать лучи света, вертикально проецируемые на оксид кремния, и, последним, этап проецирования луча эксимерного лазера на слой аморфного кремния через слой оксида кремния, чтобы преобразовать слой аморфного кремния в тонкую пленку низкотемпературного поликристаллического кремния.
Наверх