Бестопливная тригенерационная установка

Изобретение относится к детандер-генераторным агрегатам для производства электроэнергии и устройствам для производства тепла и холода за счет разделения газового потока. Между газопроводом высокого давления и газопроводом низкого давления, разделенными дросселем, установлена линия подачи газа на детандер и теплообменник подогрева газа, детандер, кинематически соединенный с электрическим генератором, соединенным электрической связью с потребителем электроэнергии. Компрессор кинематически соединен с электрическим двигателем, соединенным второй электрической связью с генератором. Трубопровод на входе компрессора соединен с атмосферой, а выход соединен со входом трубы Леонтьева. Первый выход трубы с охлажденным воздухом соединен со входом потребителя холода, второй выход с нагретым воздухом соединен со входом регулятора расхода. Первый выход регулятора расхода соединен со входом потребителя теплоты, второй выход - со входом теплообменника подогрева газа. Выход теплообменника по греющей среде соединен с атмосферой. Техническим результатом является обеспечение генерации электроэнергии, тепла и холода без сжигания органического топлива и без использования традиционных возобновляемых источников энергии. 1 ил.

 

Изобретение относится к области теплоэнергетики и касается детандер-генераторных агрегатов для производства электроэнергии при использовании перепадов давления транспортируемого природного газа на станциях технологического уменьшения давления (газораспределительных станциях и газорегуляторных пунктах) системы газоснабжения и устройств для производства тепла и холода за счет разделения газового потока на охлажденную и нагретые части способом температурной стратификации газа (труба Леонтьева).

Известна предназначенная для генерации электроэнергии детандер-генераторная установка, содержащая трубопровод высокого давления, установленные по ходу газа и последовательно соединенные теплообменник, детандер, кинематически соединенный с электрическим генератором, соединенным электрической связью с потребителем электроэнергии. Недостатком такой установки является отсутствие возможности получения тепла и холода для передачи их потребителю и необходимость использования тепла сожженного топлива для необходимого технологического подогрева газа в теплообменнике перед детандером. (Степанец А.А., Горюнов И.Т., Гуськов Ю.Л. Энергосберегающие комплексы, основанные на использовании перепада давления на газопроводах // Теплоэнергетика. - 1995. - №6. - С. 33-35).

Известна предназначенная для создания холодильно-нагревательных аппаратов установка, содержащая разделительную камеру, в которую с помощью компрессора подается рабочее тело в газообразном состоянии, поступающее затем в две коаксиально расположенные трубы, во внутренней из которых газ с помощью профилированного сопла разгоняют до сверхзвуковой скорости и он имеет на выходе температуру выше температуры окружающей среды, а по кольцевому каналу газ проходит с дозвуковой скоростью и он имеет на выходе температуру ниже температуры окружающей среды. Для достижения технического результата в устройстве предусмотрены газоходы для раздельного вывода холодного и горячего газа. Недостатком такой установки является необходимость затрат энергии невозобновляемых либо традиционных возобновляемых источников на привод компрессора. (Леонтьев А.И. Газодинамический метод энергоразделения газовых потоков // ТВТ. 1997. Т. 35, №1. С. 157-159).

Техническая задача, решаемая изобретением, состоит в обеспечении возможности генерации для передачи потребителям, наряду с электроэнергией, также тепла и холода без сжигания органического топлива и без использования традиционных возобновляемых источников энергии.

Технический эффект, обеспечивающий решение технической задачи, заключается в возможности одновременного производства электроэнергии, тепла и холода для потребителя без сжигания органического топлива и без использования традиционных возобновляемых источников энергии и достигается тем, что известная установка, включенная между газопроводом высокого давления и газопроводом низкого давления, разделенных дросселем, содержащая линию подачи газа на детандер и установленный на ней теплообменник подогрева газа, детандер, кинематически соединенный с электрическим генератором, соединенным электрической связью с потребителем электроэнергии, согласно изобретению, снабжена трубой Леонтьева, регулятором расхода, компрессором, кинематически соединенным с электрическим двигателем, соединенным второй электрической связью с генератором, при этом трубопровод на входе компрессора соединен с атмосферой, а выход соединен со входом трубы Леонтьева, первый выход которой с охлажденным воздухом соединен со входом потребителя холода, второй выход которой с нагретым воздухом соединен со входом регулятора, первый выход которого соединен со входом потребителя теплоты, второй выход которого соединен со входом теплообменника подогрева газа, выход которого по греющей среде соединен с атмосферой.

На рисунке приведена принципиальная схема предлагаемой тригенерационной бестопливной установки для централизованного комбинированного электро-, тепло- и хладоснабжения.

Бестопливная тригенерационная установка, включенная между газопроводом 1 высокого давления и газопроводом 2 низкого давления, разделенных дросселем 3, содержащая линию 4 подачи газа на детандер и установленный на ней теплообменник 5 подогрева газа, детандер 6, кинематически соединенный с электрическим генератором 7, соединенным электрической связью 8 с потребителем электроэнергии 9, снабжена трубой Леонтьева 10, регулятором 11, компрессором 12, кинематически соединенным с электрическим двигателем 13, соединенным второй электрической связью 14 с электрическим генератором. При этом трубопровод 15 на входе компрессора соединен с атмосферой, а выход компрессора 16 соединен с со входом трубы Леонтьева, первый выход 17 которой с охлажденным воздухом соединен со входом потребителя холода 18, второй выход 19 которой с нагретым воздухом соединен со входом регулятора, первый выход 20 которого соединен со входом потребителя теплоты 21, второй выход 22 которого соединен со входом теплообменника для подогрева газа, выход 23 которого по греющей среде соединен с атмосферой.

Установка работает следующим образом.

Транспортируемый природный газ подается на станцию технологического уменьшения давления по газопроводу 1 высокого давления. Одна часть потока газа направляется в дросселирующее устройство 3, где его давление снижается до необходимого по условиям эксплуатации газопотребляющего оборудования в газопроводе 2 низкого давления уровня. Вторая часть потока газа по линии 4 подается в расположенный перед детандером 6 теплообменник 5, где газ подогревается таким образом, чтобы его температура на выходе из детандера 6 не была меньше заданной по условиям эксплуатации газопроводов. В детандере 6 энергия потока газа преобразуется в механическую работу, которая, в свою очередь, преобразуется в электроэнергию в кинематически связанным с детандером 6 электрическом генераторе 7. После детандера 6 поток газа поступает в газопровод 3 низкого давления, откуда, после смешения с потоком газа, поступающим из дросселирующего устройства 2, направляется на газоиспользующее оборудование.

Выработанная генератором 7 электроэнергия разделяется на два потока. Первый из них по линии 8 направляется потребителю 9 электроэнергии, второй по линии 14 подается на электродвигатель 13 компрессора 12.

Поступивший по линии 15 в компрессор 12 атмосферный воздух сжимается и по линии 16 подается в трубу Леонтьева 10. Поток охлажденного воздуха по линии 17 из трубы Леонтьева 10 направляется потребителю холода 18. Поток нагретого воздуха отводится из трубы Леонтьева 10 по линии 19 в регулятор 11. Одна часть нагретого воздуха из регулятора 11 по линии 20 направляется потребителю тепла 21, вторая его часть по линии 22 подается в теплообменник 5, откуда после подогрева потока газа перед детандером 6 отводится в атмосферу по линии 23.

Установка предназначена для использования на станциях технологического уменьшения давления транспортируемого природного газа вместо традиционно применяемых дросселирующих устройств.

Бестопливная тригенерационная установка, включенная между газопроводом высокого давления и газопроводом низкого давления, разделенными дросселем, содержащая линию подачи газа на детандер и установленный на ней теплообменник подогрева газа, детандер, кинематически соединенный с электрическим генератором, соединенным электрической связью с потребителем электроэнергии, отличающаяся тем, что она снабжена трубой Леонтьева, регулятором расхода, компрессором, кинематически соединенным с электрическим двигателем, соединенным второй электрической связью с генератором, при этом трубопровод на входе компрессора соединен с атмосферой, а выход соединен со входом трубы Леонтьева, первый выход которой с охлажденным воздухом соединен со входом потребителя холода, второй выход которой с нагретым воздухом соединен со входом регулятора расхода, первый выход которого соединен со входом потребителя теплоты, второй выход которого соединен со входом теплообменника подогрева газа, выход которого по греющей среде соединен с атмосферой.



 

Похожие патенты:

Изобретение относится к переработке углеводородных газов. Сжатый парообразный выходящий поток подвергают уменьшению перегрева в системе пароохладителя.

Изобретение относится к промышленной теплотехнике и может быть использовано при создании холодильно-нагревательных аппаратов. Способ температурной стратификации газа включает подачу исходного газового потока с избыточным давлением на вход внутреннего канала разделительной камеры с обеспечением его разгона и подогрева.

Изобретение относится к аппаратам для разделения газового потока на холодную и горячую части. .

Изобретение относится к холодильной технике. .

Изобретение относится к технике получения криогенных температур в замкнутых дроссельных системах, устанавливаемых на транспорте. .

Изобретение относится к замкнутым дроссельным микрокриогенным системам, устанавливаемым на транспортных средствах. .

Изобретение относится к медицинской технике, а именно к устройствам для медицинской криологии. .

Изобретение относится к энергомашиностроению и может быть использовано в холодильной и в микрокриогенной технике. .

Изобретение относится к промышленной теплотехнике, в частности к созданию холодильно-нагревательных аппаратов для разделения газового потока на холодную и горячую части.

Изобретение относится к устройствам, применяемым в нефтегазовой промышленности, и может быть использовано для подготовки нефтяного попутного газа к дальнему транспорту за счет осушки газа и низкотемпературной сепарации тяжелых углеводородов.

Изобретение относится к области энергетики, в частности теплоэлектрогенерации. Сущность изобретения заключается в том, что устройство предусматривает когенерацию тепловой и электрической мощности за счет низкотемпературных источников - вода, воздух, грунт, солнечное излучение, для чего в теплонасосе дополнительно предусмотрены регулятор подачи тепловой энергии, контроллер и электромотор-генератор, вход которого подключен к источнику электрической энергии, а выход подключен к потребителю электрической энергии, управляющий канал мотор-генератора подключен к контроллеру, второй управляющий канал которого подключен к регулятору подачи тепловой энергии, вход которого подключен к конденсатору, а выход подключен к потребителю тепловой энергии, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора.

Холодильник включает охлаждающую часть для охлаждения объекта посредством теплообмена с хладагентом, детандер-компрессор и линию циркуляции хладагента для циркуляции хладагента через компрессор, детандер и охлаждающую часть.

Изобретение относится к области теплоэнергетики. Бестопливная тригенерационная установка включена между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем.

Изобретение относится к теплоэнергетике. Между газопроводами высокого и низкого давления включены первый дроссель, детандер с электрогенератором, соединенным с потребителем и двигателем компрессора, первый теплообменник на линии подачи газа, компрессор, вход которого соединен с выходом испарителя, низкопотенциальный источник тепла.

Изобретение предназначено для выработки электроэнергии на энергетических установках газораспределительных станций и на газорегуляторных пунктах. Природный газ высокого давления расширяют в турбодетандере и снижают его давление до уровня, требуемого конкретному потребителю, поддерживая его температуру не менее 278 К.

Изобретение относится к способам сжатия рабочей жидкости, используемым для переноса теплоты от теплоносителя с более низкой (Е) температурой к теплоносителю с более высокой температурой (Al), и может быть использовано в тепловом насосе.

Газотурбодетандерная энергетическая установка газораспределительной станции содержит турбодетандер с регулируемым сопловым аппаратом, газотурбинную установку с компрессором низкого давления, камерой сгорания и газовой турбиной, электрогенератор, газопровод топливного газа, выходную газовую магистраль, обводную магистраль с редукционной установкой, систему управления, теплообменник предварительного подогрева газа высокого давления, теплообменник подогрева газа выходной газовой магистрали.

Изобретение относится к энергетике. Система для снижения давления в находящейся под давлением текучей среде в трубопроводе содержит по меньшей мере одно устройство для снижения давления для расширения текучей среды в трубопроводе для получения более низкого давления; и транскритический тепловой насос для обеспечения циркуляции сверхкритической текучей среды, причем сверхкритическая текучая среда подвергается охлаждению, чтобы выделить тепло для передачи к находящейся под давлением текучей среде в трубопроводе перед по меньшей мере одним расширением указанной находящейся под давлением текучей среды.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Изобретение относится к детандер-генераторным агрегатам. Детандер-генераторный агрегат содержит первую ступень детандера для привода электрогенератора, вторую ступень детандера для привода компрессора, теплообменник, дроссель, испаритель, газопроводы высокого и низкого давления, первую, вторую и байпасную регулировочно-запорные электроприводные задвижки, насос с частотно-регулируемым приводом для подачи низкопотенциального теплоносителя в испаритель, блок управления, датчики температуры и давления.
Наверх