Способ работы парогазовой установки электростанции

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Для повышения КПД газотурбинной установки предлагается турбокомпрессор газотурбинной установки выполнить двухступенчатым, состоящим из ступени низкого давления и ступени высокого давления, и осуществлять промежуточное охлаждение сжатого в ступени низкого давления циклового воздуха перед подачей его в ступень высокого давления в промежуточном воздухоохладителе путем подачи в его нагревательный тракт питательной воды котла-утилизатора газотурбинной установки при температуре 30-35°C. Для повышения КПД котла-утилизатора газотурбинной установки путем снижения температуры уходящих газов в хвостовой части котла-утилизатора дополнительно устанавливают теплообменную поверхность для подогрева исходной воды до температуры 30-35°C перед подачей ее на установку химводоочистки. В результате осуществления процесса теплообмена между уходящими газами при температуре 105-110°C на входе в дополнительную теплообменную поверхность и исходной водой, имеющей температуру на входе в дополнительную теплообменную поверхность 5-15°C, температура отработавших в котле-утилизаторе уходящих газов понизится, что обусловливает повышение КПД котла-утилизатора. Технический результат изобретения - повышение коэффициента полезного действия газотурбинной установки и котла-утилизатора электростанции, а также повышение экономичности парогазовой установки электростанции. Повышение КПД газотурбинной установки и котла-утилизатора обусловливает повышение экономичности парогазовой установки электростанции. 1 ил.

 

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.

Известен аналог - способ работы парогазовой установки электростанции (см. Буров В.Д., Дорохов Е.В., Елизаров Д.П. и др. Тепловые электрические станции. М.: Издательство МЭИ, 2007, рис. 15.12, с. 388), по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания. Продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора. Отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов генерируется водяной пар, водяной пар подают в паровую турбину, а отработавшие газы по выхлопному газоходу отводят в атмосферу. В паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора. Отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара. Данный способ принят за прототип.

К причине, препятствующей достижению указанного ниже технического результата при реализации известного способа работы парогазовой установки электростанции, принятого за прототип, относится то, что парогазовая установка электростанции обладает пониженной экономичностью, так как не производится промежуточное охлаждение циклового воздуха, сжимаемого в турбокомпрессоре газотурбинной установки, что обусловливает повышенные затраты энергии на привод турбокомпрессора и снижение коэффициента полезного действия (КПД) газотурбинной установки. Кроме того, отвод в атмосферу уходящих газов, отработавших в котле-утилизаторе газотурбинной установки, производится при достаточно высокой температуре 105-110°C, что снижает КПД котла-утилизатора. Таким образом, отсутствие промежуточного охлаждения циклового воздуха, сжимаемого в турбокомпрессоре газотурбинной установки, и отвод в атмосферу при достаточно высокой температуре уходящих газов, отработавших в котле-утилизаторе, обусловливают низкие значения КПД газотурбинной установки и котла-утилизатора, что в итоге приводит к снижению КПД парогазовой установки электростанции и ее экономичности.

Технический результат изобретения - повышение коэффициента полезного действия газотурбинной установки и котла-утилизатора электростанции, а также повышение экономичности парогазовой установки электростанции.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе работы парогазовой установки электростанции, по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов в теплообменной поверхности генерируется водяной пар, водяной пар подают в паровую турбину, а отработавшие газы по выхлопному газоходу отводят в атмосферу, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, особенность заключается в том, что парогазовую установку дополнительно снабжают промежуточным воздухоохладителем, расположенным после ступени низкого давления турбокомпрессора газотурбинной установки, который выполняют двухступенчатым со ступенями низкого и высокого давления и осуществляют промежуточное охлаждение сжатого в ступени низкого давления циклового воздуха перед подачей его в ступень высокого давления в промежуточном воздухоохладителе путем подачи в его нагревательный тракт питательной воды котла-утилизатора газотурбинной установки при температуре 30-35°C, а в хвостовой части котла-утилизатора устанавливают дополнительную теплообменную поверхность, в которой осуществляют охлаждение уходящих газов путем подачи в ее нагревательный тракт исходной воды при температуре 5-15°C перед подачей ее на химводоочистку электростанции, при этом подогрев исходной воды перед подачей ее на химводоочистку электростанции в дополнительной теплообменной поверхности производят до температуры 30-35°C.

На чертеже представлена схема парогазовой установки электростанции.

Парогазовая установки электростанции содержит газотурбинную установку, включающую газовую турбину 1, двухступенчатый турбокомпрессор, состоящий из ступени низкого давления 2 и из ступени высокого давления 3, камеру сгорания 4 и электрогенератор 5, промежуточный воздухоохладитель 6, котел-утилизатор, содержащий основную теплообменную поверхность 7 и дополнительную теплообменную поверхность 8, установленную в хвостовой части котла-утилизатора, паротурбинную установку, включающую паровую турбину 9 с конденсатором 10, электрический генератор 11 и питательный насос 12, трубопровод питательной воды 13, подключенный к основной теплообменной поверхности 7 котла-утилизатора через нагревательный тракт промежуточного воздухоохладителя 6. При этом дополнительная теплообменная поверхность 8 котла-утилизатора по нагревательному тракту подключена к трубопроводу исходной воды 14 на химводоочистку 15 электростанции.

Способ реализуется следующим образом.

Атмосферный воздух подают в ступень низкого давления 2 двухступенчатого турбокомпрессора, где осуществляется процесс сжатия воздуха. В процессе сжатия воздух нагревается. Подогретый воздух направляют в греющий тракт промежуточного воздухоохладителя 6, в нагреваемый тракт которого питательным насосом 12 по трубопроводу питательной воды 13 подают питательную воду котла-утилизатора газотурбинной установки при температуре 30-35°C. В промежуточном воздухоохладителе 6 осуществляют процесс теплообмена между воздухом и питательной водой, при этом воздух охлаждается, а питательная вода подогревается. Охлажденный в промежуточном воздухоохладителе 6 воздух подают в ступень высокого давления 3 двухступенчатого турбокомпрессора, а подогретую питательную воду направляют в основную теплообменную поверхность 7 котла-утилизатора. В ступени высокого давления 3 двухступенчатого турбокомпрессора воздух сжимают до необходимого давления, после чего направляют в камеру сгорания 4, куда также подают органическое топливо. В камере сгорания 4 осуществляют сгорание органического топлива с образованием нагретых до высокой температуры продуктов сгорания. Образовавшиеся в камере сгорания 4 продукты сгорания смешивают с вторичным воздухом. Смесь продуктов сгорания с вторичным воздухом (газы) направляют в газовую турбину 1, в которой осуществляется работа газотурбинного цикла, затрачиваемая на привод электрогенератора 5 и двухступенчатого турбокомпрессора, состоящего из ступени низкого давления 2 и из ступени высокого давления 3. Отработавшие в газовой турбине 1 газы подают в котел-утилизатор, где в процессе охлаждения газов в основной теплообменной поверхности 7 генерируется водяной пар, а в дополнительной теплообменной поверхности 8 осуществляется подогрев исходной воды до температуры 30-35°C. Подогретая до температуры 30-35°C исходная вода по трубопроводу исходной воды 14 направляется на химводоочистку 15 электростанции. Отработавшие в котле-утилизаторе газы через дымовую трубу (не показана) отводят в атмосферу, а водяной пар направляют в паровую турбину 9. В паровой турбине 9 осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора 11. Отработавший в паровой турбине 9 водяной пар подают в конденсатор 10, в котором осуществляют процесс конденсации водяного пара и образование турбинного конденсата. Турбинный конденсат смешивают с обессоленной водой, полученной в процессе обработки исходной воды на химводоочистке 15, поток питательной воды котла-утилизатора газотурбинной установки питательным насосом 12 подают в промежуточный воздухоохладитель 6, подогревают и направляют в основную теплообменную поверхность 7 котла-утилизатора.

Таким образом, для повышения экономичности парогазовой установки электростанции путем повышения КПД газотурбинной установки предлагается турбокомпрессор газотурбинной установки выполнить двухступенчатым, состоящим из ступени низкого давления и ступени высокого давления, и осуществлять промежуточное охлаждение сжатого в ступени низкого давления циклового воздуха перед подачей его в ступень высокого давления в промежуточном воздухоохладителе путем подачи в его нагревательный тракт питательной воды котла-утилизатора газотурбинной установки при температуре 30-35°C. Промежуточное охлаждение сжатого в ступени низкого давления циклового воздуха перед подачей его в ступень высокого давления двухступенчатого турбокомпрессора газотурбинной установки позволяет уменьшить потребляемую турбокомпрессором мощность вследствие снижения удельного объема воздуха, увеличить полезную работу газовой турбины за счет снижения затрат энергии на сжатие циклового воздуха и повысить КПД газотурбинной установки. Кроме того, для повышения КПД котла-утилизатора газотурбинной установки путем снижения температуры уходящих газов целесообразно в хвостовой части котла-утилизатора дополнительно установить теплообменную поверхность для подогрева исходной воды до температуры 30-35°C перед подачей ее на химводоочистку. В результате осуществления процесса теплообмена между уходящими газами при температуре 105-110°C на входе в дополнительную теплообменную поверхность и исходной водой, имеющей температуру на входе в дополнительную теплообменную поверхность 5-15°C, температура отработавших в котле-утилизаторе уходящих газов понизится, что обусловливает повышение КПД котла-утилизатора. Повышение КПД газотурбинной установки и котла-утилизатора обусловливает повышение экономичности парогазовой установки электростанции.

Способ работы парогазовой установки электростанции, по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов в теплообменной поверхности генерируется водяной пар, водяной пар подают в паровую турбину, а отработавшие газы по выхлопному газоходу отводят в атмосферу, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, отличающийся тем, что парогазовую установку дополнительно снабжают промежуточным воздухоохладителем, расположенным после ступени низкого давления турбокомпрессора газотурбинной установки, который выполняют двухступенчатым со ступенями низкого и высокого давления, и осуществляют промежуточное охлаждение сжатого в ступени низкого давления циклового воздуха перед подачей его в ступень высокого давления в промежуточном воздухоохладителе путем подачи в его нагревательный тракт питательной воды котла-утилизатора газотурбинной установки при температуре 30-35°С, а в хвостовой части котла-утилизатора устанавливают дополнительную теплообменную поверхность, в которой осуществляют охлаждение уходящих газов путем подачи в ее нагревательный тракт исходной воды при температуре 5-15°С перед подачей ее на химводоочистку электростанции, при этом подогрев исходной воды перед подачей ее на химводоочистку электростанции в дополнительной теплообменной поверхности производят до температуры 30-35°С.



 

Похожие патенты:

Изобретение относится к паровым турбинам, в частности к рассчитанным на несколько давлений устройствам сальников лабиринтного типа для уменьшения утечек пара между вращающимися и стационарными компонентами паровой турбины.

Изобретение относится к энергетическим установкам с импульсно-детонационным сжиганием ископаемых или синтетических горючих материалов, которые могут быть использованы, например, на электроэнергетических предприятиях или на промышленных предприятиях в составе различных технологических комплексов для получения электромеханической энергии, в том числе в арктических условиях.

Изобретение относится к системам, которые захватывают и повторно используют отработанное тепло. Установка для захвата тепла, хранения тепла и теплообмена, включающая по меньшей мере один массив для теплообмена и хранения тепла (TXES), при этом каждый массив TXES включает в себя один или несколько элементов TXES, которые получают поток флюида нагретого исходного флюида и рабочий флюид, при этом элементы TXES обеспечивают передачу тепловой энергии между нагретым исходным флюидом и элементами TXES.

Изобретение относится к энергетике, в частности к комбинированным способам получения электроэнергии и синтетического жидкого топлива в газотурбинных и парогазовых установках.Способ включает получение забалластированного азотом синтез-газа за счет частичного окисления природного газа в потоке сжатого воздуха за компрессором высокого давления ПГУ, подаче этого синтез-газа в однопроходной каталитический реактор синтеза метанола с последующим дожиганием обедненного газа после каталитического реактора в камере сгорания ГТУ.

Изобретение относится к способу соединения вращающегося устройства, в частности паровой турбины, и содержащего вал устройства, в частности газовой турбины, со следующими этапами: ускорение вращающегося устройства до числа оборотов на выходе, которое меньше числа оборотов содержащего вал устройства; определение угла рассогласования между содержащим вал устройством и вращающимся устройством; ускорение вращающегося устройства с величиной ускорения, которую определяют из разности заданного числа оборотов, которая возникает в зависимости от определенного угла рассогласования, ускорения и желаемого целевого угла соединения.

Теплофикационная парогазовая установка с паротурбинным приводом компрессора относится к энергетике и может быть применена для тепло- и электроснабжения потребителей в новых микрорайонах городов.

Изобретение относится к энергетике. В способе работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройстве для его реализации теплоту газов, расширенных в газовой турбине, используют для регенеративного подогрева сжатого воздуха и сетевой воды теплосети.

Изобретение относится к энергетике. Система труб для передачи тепла из потока выхлопного газа питательной воде, содержащая экономайзер, который включает в себя четыре секции, а также теплообменник и множество клапанов.

Изобретение относится к области тепловой энергетики и может быть использовано на тепловых электростанциях, а именно в работе бинарной парогазовой установки теплоэлектроцентрали (ПГУ-ТЭЦ).

Изобретение относится к области тепловой энергетики и может быть использовано на тепловых электростанциях, а именно в работе бинарной парогазовой установки теплоэлектроцентрали (ПГУ-ТЭЦ).
Наверх