Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором



Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором
Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором
Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором
G02B26/0858 - Оптические устройства или приспособления с использованием подвижных или деформируемых оптических элементов для управления интенсивностью, цветом, фазой, поляризацией или направлением света, например, переключение, стробирование, модуляция (механически управляемые конструктивные элементы осветительных устройств для управления направлением света F21V; специально предназначенные для измерения характеристик света G01J; устройства или приспособления, оптические функции которых изменяются при изменении оптических свойств среды в этих устройствах или приспособлениях, G02F 1/00; управление светом вообще G05D 25/00; управление источниками света H01S 3/10,H05B 37/00-H05B 43/00)

Владельцы патента RU 2695281:

Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (RU)

Изобретение относится к оптике, к устройствам для управления направлением отклонения оптических лучей и может быть использовано в астрономии, системах видения в турбулентной атмосфере, в сканирующих системах. Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором состоит из решающего устройства, трех высоковольтных усилителей, а также исполнительных устройств, созданных на основе пьезопакетов. В устройство включен двухканальный электронный демпфер, состоящий из интегратора, последовательно соединенного с ним дифференциатора и сумматора, суммирующего с инверсией выходные сигналы с дифференциатора и фильтра низкой частоты. Двухканальный электронный демпфер установлен между выходами цифроаналогового преобразователя и входами решающего устройства, выходные напряжения с которого через три усилителя управляют пьезокерамическими толкателями. Технический результат заключается в повышении точности и стабильности обработки управляющих сигналов. 3 ил.

 

Изобретение относится к оптике, в частности к устройствам для управления направлением отклонения оптических лучей, и может быть использовано для коррекции углов наклона волнового фронта в адаптивных оптических системах в астрономии, системах видения в турбулентной атмосфере, управлении лазерным лучом в сканирующих системах.

Известен пьезокерамический двухкоординатный однозеркальный оптический дефлектор [Патент РФ №2606520], который содержит корпус, зеркало в оправе, два подвеса, среднее основание, исполнительный привод, толкатели и систему управления. Система управления выполнена в виде отдельного блока, содержащего плату управления, плату сопряжения с модулем питания и плату интерфейса.

Недостатком аналога является сложность конструкции двухуровневого привода, возникновение сложных колебаний зеркал на частоте их механических резонансов при ступенчатом сигнале управления, например от цифроаналоговых преобразователей платы интерфейса, недостаточное быстродействие.

В качестве прототипа выбран пьезокерамический привод, описанный в статье [Пьезокерамический привод для двух координатного управления угловым положением зеркала. Л.В. Антошкин, Н.Н. Ботыгина, О.Н. Емалеев, П.А. Коняев, В.П. Лукин, А.П. Янков, Приборы и техника эксперимента, 2002, №1, с. 144-146], который содержит электронный блок, решающее устройство, усилители и исполнительные устройства на основе пьезопакетов, с закрепленным на них зеркалом и установленных на основании в вершинах равностороннего треугольника.

Недостатком прототипа является искаженная реакция зеркала на ступенчатые сигналы управления, в том числе и сигналы ступенчатого характера от цифроаналоговых преобразователей, вызывающие колебания зеркала на частоте его механического резонанса, что снижает точность позиционной характеристики и снижает быстродействие устройства.

Задачей изобретения является создание устройства управления двухкоординатным пьезоэлектрическим оптическим дефлектором с минимальным временем установления зеркала, с отсутствием колебаний зеркала при ступенчатом сигнале управления, увеличение частоты поворота зеркала, повышение точности и стабильности отработки управляющих сигналов.

Заявляемое устройство улучшает точность и быстродействие адаптивных оптических систем для коррекции углов наклона волнового фронта в астрономии, системах видения в турбулентной атмосфере, управлении лазерным лучом в сканирующих системах.

Поставленная задача заявляемого изобретения достигается тем, что устройство управления двухкоординатным пьезокерамическим оптическим дефлектором, содержит решающее устройство и три высоковольтных усилителя, а также исполнительные устройства, созданных на основе пьезопакетов из керамики, имеется контроллер, двухканальный цифроаналоговый преобразователь, двуканальный электронный демпфер, установленный между выходами X, У цифроаналогового преобразователя и входами X, У решающего устройства, выходные напряжения с которого через три усилителя управляют пьезокерамическими толкателями в соответствии с блок схемой устройства управления двухкоординатным пьезокерамическим оптическим дефлектором.

Преимущества предложенного устройства заключаются в том, что повышается быстродействие поворота зеркала по двум координатам за счет сокращения времени установки зеркала и точность позиционной характеристики дефлектора, уменьшаются искажения, вносимые зеркалом в процессе работы в адаптивных оптических системах, отсутствие колебаний зеркала при ступенчатом сигнале управления, за счет предотвращения возможности возникновения колебаний зеркала на частоте его механического резонанса.

Новым для устройства является наличие двухканального блока электронного демпфирования (демпфер), предназначенного для предотвращения возникновения колебаний зеркала дефлектора при ступенчатом изменении входных управляющих сигналов с ЦАПа

Сущность изобретения состоит в следующем.

Управляющие дефлектором сигналы, после формирования цифроаналоговым преобразователем поз. 2 (фиг. 1, блок схема устройства управления пьезокерамическим приводом с электронным демпфером), в аналоговом виде имеют ступенчатую форму с крутыми фронтами с широким частотным спектром. При каждом ступенчатом изменении управляющего напряжения на выходах усилителей происходит линейная деформация пьезокерамических актюаторов, что вызывает повороты зеркала, установленного на них. Зеркало дефлектора устанавливается в заданное положение, но в переходный момент начинает колебаться с частотой своего механического резонанса с убывающей амплитудой, пропорциональной величине изменения входного управляющего сигнала. Время успокоения и амплитуда возникающих колебаний зеркала зависит от механических характеристик дефлектора на пьезокерамических актюаторах.

Для обеспечения поставленной задачи в устройство управления включен двухканальный блок электронного демпфирования (демпфер) фиг. 1, поз. 3, предназначенный для предотвращения возникновения колебаний зеркала дефлектора при ступенчатом изменении входных управляющих сигналов с ЦАПа

Каждый канал электронного демпфера (фиг. 2, блок схема одного канала электронного демпфера) состоит из интегратора 11, последовательно соединенного с ним дифференциатора 12 и сумматора 13, суммирующего с инверсией выходные сигналы с дифференциатора и фильтра низкой частоты 14.

Устройство (фиг. 1) состоит из контроллера 1, двухканального цифроаналогового преобразователя 2, двуканального электронного демпфера 3, установленного между выходами X, У цифроаналогового преобразователя и входами X, У решающего устройства 4, выходные напряжения с которого через три усилителя 5, 6, 7 управляют пьезокерамическими толкателями 8, 9, 10 в соответствии с блок схемой устройства управления двухкоординатным пьезокерамическим оптическим дефлектором.

Устройство работает следующим образом:

По любому фронту ступенчатого изменения сигналов управления с ЦАПа демпфер формирует одиночный импульс в виде полупериода синусоиды на частоте механического резонанса зеркала, по амплитуде пропорциональный величине изменения управляющего напряжения и противофазный по направлению и суммирует его с управляющим сигналом ЦАПа (фиг. 3).

Работа блока электронного демпфера отражена на временной диаграмме напряжений фиг. 3.

15 - ступенчатый аналоговый сигнал с цифроаналогового преобразователя на входе демпфера;

16 - выход интегратора;

17 - выход дифференциатора;

18 - выход фильтра низкой частоты;

19 - выход демпфера;

20 - угол поворота зеркала дефлектора;

21 - угол поворота зеркала дефлектора без демпфирования.

Скорректированные по форме сигналы управления по двум координатам с демпфера поступают на входы решающего устройства, вычисляющего управляющие напряжения для каждого актюатора, с выходов которого три сигнала управления распределяются на входы соответствующим им выходных усилителей поз. 5, 6, 7, (фиг. 1).

Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором, состоящее из решающего устройства, трех высоковольтных усилителей, а также исполнительных устройств, созданных на основе пьезопакетов, отличающееся тем, что в устройство включен двухканальный блок электронного демпфирования, состоящий из интегратора, последовательно соединенного с ним дифференциатора и сумматора, суммирующего с инверсией выходные сигналы с дифференциатора и фильтра низкой частоты, двухканальный электронный демпфер установлен между выходами цифроаналогового преобразователя и входами решающего устройства, выходные напряжения с которого через три усилителя управляют пьезокерамическими толкателями.



 

Похожие патенты:

Изобретение относится к области автоматических регуляторов. Заявленный струйно-фотокомпенсационный пропорциональный регулятор состоит из магнитоэлектрического гальванометра, включающего рамку, помещенную в зазоре постоянного магнита, и подвижную часть с жестко закрепленными на ней пластиной и зеркалом, на которое из источника света через конденсор и диафрагму направляется луч света, а к поверхности пластины, жестко закрепленной на растяжках магнитоэлектрического гальванометра, нормально расположена входная пневматическая схема, выполненная в виде двух сопел.

Изобретение относится к устройствам управления и ввода данных, а именно к устройству, использующему в качестве данных, получаемых от пользователя, положение рук на манипуляторе.

Изобретение относится к нефтепереработке и может быть использовано в товарных цехах заводов при непрерывном смешении мазутов путем каскадного смешения набора нефтепродуктов, предварительно сформированных из отдельных компонентов.

Изобретение относится к области автоматического управления. .

Изобретение относится к устройствам управления двухпозиционными пневмоприводами , например, используемыми с запорной армат/рой. .

Изобретение относится к приборостроению , а именно к пневматическим устройствам регулирования технологических процессов. .

Изобретение относится к области нефтепереработки. .

Изобретение относится к пневматическим устройствам управления и регулирования технологическими процессами. .

Изобретение относится к пневматическим системам регулирования и может быть использовано при автоматизации процессов в химической, нефтеперерабатывающей и других отраслях промышленности.

Изобретение относится к системам автоматического управления рабочими органами сельскохозяйственных машин. Устройство содержит рабочий орган с приводом, усилитель привода рабочего органа, устройство управления, датчики для определения местоположения рабочего органа, блок энергопитания.

Изобретение относится к области анализа материалов путем определения их плотности, более конкретно к автоматическим датчикам газового анализа, а именно к фотокомпенсационному датчику плотности газов, который содержит магнитоэлектрический гальванометр, включающий рамку, помещенную в зазоре постоянного магнита, и подвижную часть с жестко закрепленными на ней пластиной и зеркалом, на которое из источника света через конденсор и диафрагму направляется луч света, при этом к поверхности пластины, жестко закрепленной на растяжках магнитоэлектрического гальванометра, нормально расположена входная пневматическая схема, выполненная в виде двух сопел, а в обратной связи указанного датчика расположена электрическая дифференциальная схема, включающая в себя источники напряжения и нагрузочного сопротивления, регистрирующий прибор миллиамперметр и дифференциальный фоторезистор, и указанный датчик характеризуется тем, что к входной пневматической схеме подключена цепь сравнительного газа, в одну из веток которой подключены импульсно подающий при контрольном режиме дозу пробного газа пневмораспределитель, измерительная камера для пробного газа, также подключенная к пневмораспределителю, и микроманометры, измеряющие давления газов.

Изобретение относится к средствам автоматизации и может быть использовано, в частности, в системах управления генераторных электроагрегатов с приводом от двигателя внутреннего сгорания.
Изобретение относится к способу управления нагревательным прибором. Нагревательный прибор (1) содержит по меньшей мере один датчик CO2 (2) и один детектор (3) отсутствия/присутствия, а также нагревательный блок (5).

Изобретение относится к панелям управления для противоаварийной системы AES на подстанции электроэнергетической сети. Технический результат – обеспечен интерфейс связи с возможностью передачи двоичных команд защиты и управления.

Группа изобретений относится к автоматическим регуляторам. Способ для запуска заданной операции интеллектуального бытового устройства заключается в следующем.

Изобретение относится к автоматике и аналоговой вычислительной технике и может быть использовано для построения функциональных узлов аналоговых вычислительных машин, средств автоматического регулирования и управления, аналоговых процессоров.

Изобретение относится к области цифровых систем управления и может быть использовано для решения задач быстродействия в автоматизированных системах, например в радиотехнике, для фазовой автоподстройки частоты.

Изобретение относится к сельскому хозяйству, в частности к мелиорации, и может быть использовано для автоматического регулирования грунтовых вод на дренажной сети в осушительно-увлажнительных системах.

Изобретение относится к области управления непрерывными технологическими процессами, в частности инерционными объектами, с помощью вычислительных технических средств и может быть использовано в химической, нефтехимической и других отраслях промышленности.

Изобретение относится к области приема оптического излучения и касается импульсного фотоприемного устройства. Устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.
Наверх