Способ определения предела прочности керамики при осевом растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении хрупких материалов. Сущность: осуществляют растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей образец нагрузки. Растягивающую нагрузку в рабочей части образца создают путем приложения статической сжимающей нагрузки к реверсивному приспособлению, с установленным в нем образцом с плоскими взаимно перпендикулярными головками, с образованием зазоров между ними и скобами. Верхней головкой образец свободно опирается на опорную скобу, а сжимающая нагрузка передается нагружающей скобой на нижнюю головку образца. Размеры поперечного сечения рабочей части образца, габариты головок, радиусы скругления галтелей в переходных частях образца от его головок к рабочей части, определяемые расчетным путем из построенной конечно-элементной модели напряженного состояния образца, удовлетворяют условию отношения максимальных растягивающих напряжений в его рабочей части при соблюдении однородного напряженного состояния к максимальным главным напряжениям в головках и переходных частях образца значению не менее 2,0. Технический результат: обеспечение возможности и повышение эффективности определения предела прочности при осевом растяжении высокопрочной конструкционной керамики. 1 табл., 3 ил.

 

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для определения предела прочности при растяжении конструкционных керамических материалов в ответственных изделиях, требующих периодического контроля прочностных свойств материала при их производстве, например, керамических оболочек обтекателей летательных аппаратов.

Известен способ испытаний на растяжение металлов, в том числе и хрупких (ГОСТ 1497-84 Металлы. Методы испытаний на растяжение). Известен также способ испытаний на растяжение керамики (ASTM С 1273 - 05 Метод испытания для определения прочности при растяжении монолитной керамики при температуре окружающей среды).

Сущность методов заключается в определении разрушающей силы при растяжении, закрепленного в захватах испытательной машины, образцам Основным недостатком этих методов является наличие погрешностей, возникающих при испытании хрупких материалов: изгибающий момент в рабочем сечении образца из-за эксцентриситета приложения нагрузки, сложность крепления образца в испытательной машине и т.д., а для высокопрочной керамики реализация этих методов может быть вообще проблематичной и в паспортах на эти материалы приводятся значения прочности, определенные при изгибе.

Наиболее близким по технической сущности к заявленному решению является способ определения предела прочности при растяжении образца, в котором образец испытывают в составе лабораторной сборки, включающей в себя накладки одинаковых с образцом размеров и формы, наклеенные на двух противоположных поверхностях образца. Сборку размещают в цанговых захватах испытательной машины, прикладывают растягивающую нагрузку, измеряют разрушающую сборку нагрузку, получают кривую «деформация-напряжение», из которой восстанавливают диаграмму деформирования образца и определяют предел прочности при растяжении образца (Патент на изобретение RU №2540460, 09.07.2013. Способ определения механических свойств хрупких материалов при растяжении).

К недостаткам прототипа можно отнести то, что напряжение в образце выражают через напряжения лабораторной сборки, что может привнести определенные погрешности в результаты определения предела прочности хрупких материалов при осевом растяжении, особенно при испытании высокопрочной конструкционной керамики, прочность которой при растяжении на порядок выше прочности рассмотренного в прототипе материала.

Задачей заявляемого изобретения является обеспечение возможности определения предела прочности при осевом растяжении высокопрочной конструкционной керамики и повышение эффективности его определения.

Поставленная задача достигается тем, что предлагается способ определения предела прочности керамики при осевом растяжении, включающий растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей образец нагрузки, отличающийся тем, что растягивающую нагрузку в рабочей части образца создают путем приложения статической сжимающей нагрузки к реверсивному приспособлению, состоящему из опорной и нагружающей скоб с вертикально установленным в нем образцом, выполненным с плоскими взаимно перпендикулярными головками, с образованием зазоров между ними и скобами, верхней головкой образец свободно опирается на опорную скобу, при этом сжимающая нагрузка передается нагружающей скобой на нижнюю головку образца, а размеры поперечного сечения рабочей части образца, габариты головок, радиусы скругления галтелей в переходных частях образца от его головок к рабочей части, определяемые расчетным путем из построенной конечно-элементной модели напряженного состояния образца, удовлетворяют условию отношения максимальных растягивающих напряжений в его рабочей части при соблюдении однородного напряженного состояния к максимальным главным напряжениям в головках и переходных частях образца значению не менее 2,0.

Предлагаемый способ определения предела прочности керамики при осевом растяжении реализуется следующим образом.

Для обеспечения выполнения заданного в заявляемом способе условия определения предела прочности керамики при осевом растяжении создается расчетная модель напряженного состояния образца (в подавляющем большинстве случаев основанная на приближенных численным методах - конечно-элементном подходе) по которой определяют оптимальные размеры образца.

Схематичное изображение используемого для реализации заявляемого способа образца с круглым поперечным сечением рабочей части приведено на фиг. 1. Образец состоит из плоских взаимно перпендикулярных головок 1, продольные плоскости симметрии которых повернуты на угол 90 градусов по центральной оси относительно друг друга (условно верхней 1в и нижней 1н), рабочей части 2 и переходных частей 3, представляющих собой сопряженные галтели от головок образца к его рабочей части с радиусами R1 и R2.

Схематичное изображение реверсивного приспособления, включающего в себя нагружающую 4 и опорную 5 скобы с вертикально установленным в нем образцом 6, свободно опирающегося верхней головкой на опорную скобу, приведено на фиг. 2, где 7 - зазоры между скобами и торцами головок образца (условно верхний 7в и нижний 7н).

Реверсивное приспособление устанавливают между опорами стандартной универсальной испытательной машины, прикладывают усилие сжатия на нагружающую скобу при скорости нагружения V≤1 мм/мин. Нагружающая скоба передает усилие на нижнюю головку образца, при этом опорная скоба остается неподвижной. Таким образом, создаются в образце растягивающие осевые напряжения. Нагрузку увеличивают вплоть до разрушения образца и определяют разрушающую образец нагрузку, Рmах. По полученному результату определяют предел прочности испытуемого материала при осевом растяжении.

Для получения дополнительных данных по свойствам материала образцы испытывают с записью диаграммы «нагрузка-перемещение».

Оптимизированные размеры образца круглого поперечного сечения рабочей части приведены в таблице.

Диаграмма распределения напряжений на внешней поверхности образца вдоль центральной оси, рассчитанная по построенной конечно-элементной модели напряженного состояния образца с круглым поперечным сечением рабочей части, приведена на фиг. 3.

Из представленных результатов следует, что в рабочей части образца реализуется однородное напряженное состояние одноосного растяжения при соблюдении заданного в заявляемом способе условия: отношения максимальных растягивающих напряжений в его рабочей части при соблюдении однородного напряженного состояния к максимальным главным напряжениям в головках и переходных частях образца удовлетворяют значению не менее 2,0.

При проведении испытаний по определению предела прочности керамики при растяжении по заявляемому способу испытуемые образцы разрушались только в рабочей части, при этом коэффициент вариации полученных результатов составил 10-12%, что вполне сопоставимо со значениями коэффициентов вариации результатов при определении прочности керамики при изгибе, например, стеклокерамики ОТМ -357 и свидетельствует о соответствии построенной конечно-элементной модели напряженного состояния образца, поставленной в заявляем способе задаче.

Для проведения испытаний по заявляемому способу не требуется создания специальных нагружающих устройств, достаточно наличия стандартной универсальной испытательной машины.

Сравнение заявляемого способа с прототипом показывает, что способ отличается от известного тем, что предел прочности керамики при осевом растяжении определяют при прямом растяжении рабочей части образца, а не через напряжения лабораторной сборки по которым восстанавливают диаграмму деформирования образца испытываемого хрупкого материала и определяют его предел прочности при растяжении.

При изучении других технических решений в данной области техники установлено, что рассмотренные в способе отличительные признаки ранее не встречались, способ соответствует критерию изобретения «новизна» и обеспечивает достижение заданного технического результата изобретения - обеспечение возможности определения предела прочности при осевом растяжении высокопрочной конструкционной керамики, повышение эффективности определении предела прочности высокопрочной конструкционной керамики как в процессе производства изделий, так и при аттестации вновь разрабатываемых керамических материалов.

Таким образом, заявляемое техническое решение - способ соответствует критерию изобретения «изобретательский уровень».

Предлагаемый способ может найти применение в процессе производства различных изделий из керамики, требующих индивидуального контроля прочностных свойств материалов, при аттестации по прочности при растяжении вновь разрабатываемых конструкционных керамических и других хрупких материалов, при проведении опытно-конструкторских работ по созданию ответственных изделий в различных областях машиностроения.

Способ определения предела прочности керамики при осевом растяжении, включающий растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей образец нагрузки, отличающийся тем, что растягивающую нагрузку в рабочей части образца создают путем приложения статической сжимающей нагрузки к реверсивному приспособлению, состоящему из опорной и нагружающей скоб с вертикально установленным в нем образцом, выполненным с плоскими взаимно перпендикулярными головками, с образованием зазоров между ними и скобами, верхней головкой образец свободно опирается на опорную скобу, при этом сжимающая нагрузка передается нагружающей скобой на нижнюю головку образца, а размеры поперечного сечения рабочей части образца, габариты головок, радиусы скругления галтелей в переходных частях образца от его головок к рабочей части определяют расчетным путем из построенной конечно-элементной модели напряженного состояния образца и удовлетворяют условию отношения максимальных растягивающих напряжений в его рабочей части при соблюдении однородного напряженного состояния к максимальным главным напряжениям в головках и переходных частях образца значению не менее 2,0.



 

Похожие патенты:

Изобретение раскрывает метод для определения физического сходства имитируемого материала тела засыпки руды. Тест на уплотнение выполняется в лаборатории на теле засыпки пустой породы, чтобы получить кривую ε-σ в отношении тела засыпки пустой породы в процессе уплотнения.

Заявленная группа изобретений относится к средствам для тестирования картона. Предложенный способ тестирования картона осуществляется с помощью тестирующего механизма и включает размещение картона из известного типа гофрированного материала между опорной пластиной и прижимной пластиной механизма, приложение нагрузки к картону посредством движения прижимной пластины относительно опорной пластины с тем, чтобы сжимать картон между ними, получение показаний нагрузки и отклонений с использованием одного или нескольких датчиков, установленных на или внутри механизма, и вывод по меньшей мере одной пары показаний нагрузки и отклонений для сравнения с предварительно определяемым показанием для этой заданной нагрузки или для этого заданного отклонения для картона этого типа, причем либо это заданное отклонение представляет собой расстояние, которое не превышает 90% от предварительно определяемой средней первой точки разрушения для гофрированного материала этого типа, либо эта заданная нагрузка может составлять порядка от 50 до 95% предварительно определяемой нагрузки для достижения первой точки разрушения для гофрированного материала этого типа, при этом средняя первая точка разрушения является точкой отклонения, где возникает первая пиковая нагрузка.

Изобретение относится к способу и устройству прогнозирования разрушения. Сущность: осуществляют этапы, на которых получают эффективную ширину в направлении, включающем в себя точечносварной участок и пересекающем направление нагрузки на плоской поверхности, на которой предоставляется точечносварной участок элемента, вычисляют каждый предварительно определенный временной интервал, эффективную ширину, изменяющуюся в соответствии с изменением нагрузки, и прогнозируют разрушение точечносварного участка с использованием вычисленной эффективной ширины.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний изделий на сжатие при осевом нагружении. Способ испытания конструкции при осевом приложении нагрузок реализован с помощью устройства для испытания конструкции при осевом приложении нагрузок и состоит в том, что на опоре устанавливают испытываемую конструкцию, к которой прикладывают нагрузку в осевом направлении и контролируют прикладываемую нагрузку с помощью рычажной системы, которая образует замкнутый контур и в общем случае состоит из регулируемых по длине тяг, основного хомута, основного равноплечного рычага, по меньшей мере одного дополнительного хомута, а также по меньшей мере одной пары одинаковых по размеру вспомогательных рычагов, источника нагрузки и измерителя нагрузки.

Изобретение относится к области исследования прочностных свойств твердых материалов путем создания в них широкого диапазона напряжений, конкретно к испытаниям трубчатых образцов при действии внешнего давления и осевой растягивающей или сжимающей нагрузки.

Прибор контроля динамических напряжений в многослойном витом тросе и барабане в сверхглубокой скважине включает в себя опорную систему, систему наматывания, систему контроля динамической нагрузки и систему контроля растяжения.

Изобретение относится к испытательной технике. Стенд содержит четыре идентичных нагружающих устройства для приложения нагрузок в горизонтальной плоскости в двух взаимно перпендикулярных направлениях и закрепленных к силовому полу, каждое из которых состоит из стойки, силового гидроцилиндра, шток которого с закрепленным на нем датчиком силы сочленяется с испытуемым объектом, а корпус закреплен на ползуне, расположенном в вертикальном Т-образном пазу стойки, гидроблока, закрепленного на стойке и состоящего из фильтра тонкой очистки и сервоклапана, управляющего гидроцилиндром, датчиком перемещения гидроцилиндра, датчиком перемещения ползуна с гидроцилиндром, а также включает вертикальный гидроцилиндр для приложения к испытуемому объекту нагрузки в вертикальном направлении, шток которого с закрепленным на нем датчиком силы сочленяется с испытуемым объектом, а корпус шарнирно подвешен к каретке портала, гидроблок, аналогичный гидроблокам нагружающих устройств, сервоклапан которого управляет вертикальным гидроцилиндром, а также включает насосную установку, содержащую насос высокого давления, клапан предохранительный, манометр для регистрации давления в напорной магистрали.

Изобретение относится к испытательной технике и может использоваться для оценки прочностных и деформационных характеристик материала кольца из хрупких материалов, преимущественно керамических, при испытании на растяжение путем последовательного создания в двенадцати зонах растягивающих напряжений, максимально приближенных к чистому растяжению.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов, а именно предела пропорциональности. Сущность: устанавливают испытуемый образец между неподвижной опорной площадкой и подвижной, затем нагружают образец предварительной малой нагрузкой, регистрируемой посредством датчика нагрузки, после чего посредством блока управления подают сигнал на шаговый двигатель и нагружают образец путем перемещения подвижной опоры в сторону неподвижной опоры при помощи винта, причем величину перемещения выбирают исходя из необходимой точности измерения, после первого нагружения снимают нагрузку путем перемещения подвижной опоры в сторону обратной от неподвижной опоры при помощи винта и снимают показание с датчика нагрузки.

Изобретение относится к инженерным изысканиям для строительства при исследовании лабораторными методами деформационных свойств грунтов до начала строительства и при реконструкции старых зданий и сооружений.
Наверх