Гибридный магнитный подшипник

Изобретение относится к бесконтактным подшипникам вращения и может быть использовано преимущественно для валов и роторов высокоскоростных машин, таких как турбокомпрессоры, высокооборотные электродвигатели, генераторы, инерционные накопители энергии, пылесосы. Гибридный магнитный подшипник вращения содержит подвижную и неподвижную части с разделенными магнитным зазором плоскими кольцевыми площадками магнитного взаимодействия. Подвижная часть подшипника выполнена в форме диска (1) с кольцевыми выступами (11), а неподвижная часть включает электромагнит с катушкой (2) и магнитопроводом. Магнитопровод содержит наружный участок в форме трубы (3) и средний участок в форме диска (4), к которому своим кольцевым плоским полюсом присоединен постоянный магнит (5) в форме трубы. Постоянный магнит (5) расположен соосно с наружным цилиндрическим участком (3) магнитопровода и имеет осевое направление намагничивания. Катушка (2) электромагнита выполнена в форме тела вращения и размещена целиком во внутренней цилиндрической полости, находящейся между цилиндрической частью (3) магнитопровода и постоянным магнитом (5), коаксиально с ним. Технический результат: упрощение конструкции, снижение габаритов, увеличение несущей способности и жесткости. 1 з.п. ф-лы, 4 ил., 1 табл.

 

Изобретение относится к бесконтактным подшипникам вращения и может быть использовано преимущественно для валов и роторов высокоскоростных машин, таких как турбокомпрессоры, высокооборотные электродвигатели, генераторы, инерционные накопители энергии, пылесосы.

Известен гибридный магнитный подшипник вращения, содержащий подвижную и неподвижную части с разделенными магнитным зазором плоскими кольцевыми площадками, подвижная часть которого содержит кольцевые выступы, а неподвижная часть включает электромагнит с катушкой и магнитопроводом [1]. Постоянный магнит с радиальным направлением намагничивания выполнен в форме трубы. Он размещен в подвижной части подшипника. Такое конструктивное решение ограничивает частоту вращения подшипника. Это связано с тем, что современные магниты изготавливают из неодимовых сплавов, имеющих низкую прочность. Такие магниты разрушаются под действием больших центробежных сил.

Наиболее близким к настоящему изобретению является гибридный магнитный подшипник вращения, содержащий подвижную и неподвижную части с разделенными магнитным зазором плоскими кольцевыми площадками. Подвижная часть подшипника выполнена в виде диска с кольцевыми выступами, а неподвижная часть включает электромагнит с катушкой и магнитопроводом, содержащим наружный участок в форме трубы и средний участок в форме диска. К диску своим плоским полюсом присоединен постоянный магнит в форме трубы, размещенный внутри магнитопровода [2].

Размещение постоянного магнита в неподвижной части подшипника устраняет недостатки аналога. Наружная цилиндрическая часть магнитопровода разделена на несколько секторов, на которых установлены катушки электромагнита. Данное техническое решение позволяет менять величину магнитного потока, создаваемого постоянным магнитом с помощью электромагнита.

Недостатком прототипа является сложность конструкции. Подшипник имеет большие габариты. Наличие «паразитных» окон на магнитопроводе ослабляет магнитное поле и снижет несущую способность и жесткость подшипника.

Настоящее изобретение направлено на устранение недостатков прототипа.

Новый гибридный магнитный подшипник вращения, также как и прототип, содержит подвижную и неподвижную части с разделенными магнитным зазором плоскими кольцевыми площадками магнитного взаимодействия. Подвижная часть подшипника выполнена в форме диска с кольцевыми выступами, а неподвижная часть включает электромагнит с катушкой и магнитопроводом. Последний содержит наружный участок в форме трубы и средний участок в форме диска, к которому своим кольцевым плоским полюсом присоединен постоянный магнит в форме трубы, размещенный соосно с наружным участком магнитопровода и имеющий осевое направление намагничивания.

Катушка электромагнита выполнена в форме тела вращения и размещена целиком во внутренней цилиндрической полости, находящейся между цилиндрической частью магнитопровода и постоянным магнитом, коаксиально с ним.

Толщина кольцевых площадок, образованных выступами подвижного диска и неподвижного магнитопровода, связана с толщиной кольцевого полюса постоянного магнита и его диаметром формулой:

h=k*H*(D/d), где

Н и D - толщина и наружный диаметр кольцевого полюса постоянного магнита и соответствующая этим значениям толщина и диаметр внутреннего кольцевого выступа подвижного диска;

h и d - толщина и наружный диаметр наружной цилиндрической части магнитопровода и соответствующая этим значениям толщина и диаметр внешнего кольцевого выступа подвижного диска;

k=0,8…1,2 - коэффициент, учитывающий магнитные свойства магнитопровода.

Формула, представленные выше, получена, исходя из обеспечения постоянства магнитного потока.

Новое конструктивное решение позволяет устранить недостатки прототипа. Подшипник, как и прототип, решает задачу управления магнитным потоком и силой реакции, но является более простым. Вместо нескольких катушек электромагнита используется одна. Магнитопровод выполнен цельным, без «паразитных» окон. Это способствует усилению магнитного потока, повышению несущей способности и увеличению жесткости подшипника. Кроме этого снижаются габариты подшипника, поскольку катушка не выходит за пределы магнитопровода.

Пример реализации изобретения представлен на чертежах. На фиг. 1 показан новый гибридный подшипник в разрезе. На фиг. 2 представлены характерные размеры основных частей подшипника. На фиг. 3 и фиг. 4 показаны схемы магнитных силовых линий при разном направлении тока в катушке.

Гибридный магнитный подшипник вращения содержит подвижную и неподвижную части с разделенными магнитным зазором «δ» плоскими кольцевыми площадками магнитного взаимодействия (фиг. 1). Подвижная часть подшипника выполнена в форме диска 1 с кольцевыми выступами 11, а неподвижная часть включает электромагнит с катушкой 2 и магнитопроводом. Последний содержит наружный участок в форме трубы 3 и средний участок в форме диска 4, к которому своим кольцевым плоским полюсом присоединен постоянный магнит 5 в форме трубы. Постоянный магнит 5 расположен соосно с наружным цилиндрическим участком 3 магнитопровода. Он имеет осевое направление намагничивания.

Катушка 2 электромагнита выполнена в форме тела вращения и размещена целиком во внутренней цилиндрической полости, находящейся между цилиндрической частью 3 магнитопровода и постоянным магнитом 5, коаксиально с ним.

В центральном отверстии диска 4 с помощью крепежных деталей 6 и 7 закреплен датчик Холла 8, который через зазор взаимодействует с дополнительным магнитом 9.

Пример расчета конструктивных размеров гибридного подшипника, указанных на фиг. 2, представлен в таблице.

Гибридный подшипник устанавливается в паре с таким же подшипником, закрепленном на противоположном (левом) конце вала 10. Это позволяет уравновесить осевые силы, действующие на вал 10 и обеспечить постоянство осевого зазора «δ». Подшипник, установленный на левом конце вала (левый подшипник) выглядит зеркально по отношению к правому подшипнику, изображенному на фиг. 1.

Гибридный подшипник работает следующим образом.

При подаче тока в катушку 2 электромагнита в магнитопроводе создается магнитный поток, направление которого зависит от направления тока в катушке 2. При совпадении направления магнитного потока электромагнита и постоянного магнита 2 результирующий магнитный поток увеличивается. Это иллюстрируется формой и направлением магнитных силовых линий 12 (фиг. 3). При этом осевая сила притяжения подвижной части подшипника к неподвижной части увеличивается. При несовпадении направления магнитного потока электромагнита и постоянного магнита 2 результирующий магнитный поток уменьшается (фиг. 3). При этом осевая сила притяжения подвижной части подшипника к неподвижной части также уменьшается (фиг. 4).

Подшипник противодействует внешним силам, действующим в осевом и радиальном направлениях. Смещение вала 10 в радиальном направлении создает противодействующую этому смещению магнитную силу со стороны постоянного магнита 2, поскольку происходит удлинение магнитных силовых линий (фиг. 3 и 4). Реакция подшипника на осевое смещение вала 10 отрабатывается на основании разницы сигналов датчиков 8, размещенных на левом и правом концах вала 10. При осевом смещении вала 10 влево от среднего положения датчики 8 подают сигнал управляющей системе на увеличение тока в электромагните, расположенном в правом подшипнике. Одновременно происходит уменьшение тока в левом подшипнике. Вал 10 перемещается вправо и восстанавливает свое среднее положение. При этом восстанавливается заданное значение зазора «δ».

Настоящее изобретение с помощью простого конструктивного решения позволяет уменьшить габариты и одновременно увеличить несущую способность и жесткость гибридного магнитного подшипника. При этом уменьшаются затраты электрической энергии на питание электромагнита. Все это ведет к расширению области использования магнитных подшипников.

БИБЛИОГРАФИЯ

1. Патент TW 201226734 (A), 2012-07-01, МПК: F16C 32/04.

2. Патент US 2009315421 (А1), 2009-12-2, МПК: H02K 7/09; F16C 32/0465; F16C 32/048.

1. Гибридный магнитный подшипник вращения, содержащий подвижную и неподвижную части с разделенными магнитным зазором плоскими кольцевыми площадками, подвижная часть которого выполнена в форме диска с кольцевыми выступами, а неподвижная часть включает электромагнит с катушкой и магнитопроводом, содержащим наружный участок в форме трубы и средний участок в форме диска, к которому своим кольцевым плоским полюсом присоединен постоянный магнит в форме трубы, расположенный соосно с наружным участком магнитопровода и имеющий осевое направление намагничивания, отличающийся тем, что катушка электромагнита выполнена в форме тела вращения и размещена целиком во внутренней цилиндрической полости, находящейся между цилиндрической частью магнитопровода и постоянным магнитом коаксиально с ним.

2. Магнитный подшипник вращения по п. 1, отличающийся тем, что толщина кольцевых площадок, образованных выступами подвижного диска и неподвижного магнитопровода, связана с толщиной кольцевого полюса постоянного магнита и его диаметром формулой:

h=k*H*(D/d),

где Н и D - толщина и наружный диаметр кольцевого полюса постоянного магнита и соответствующая этим значениям толщина и диаметр внутреннего кольцевого выступа подвижного диска;

h и d - толщина и наружный диаметр наружной цилиндрической части магнитопровода и соответствующая этим значениям толщина и диаметр внешнего кольцевого выступа подвижного диска;

k=0,8 … 1,2 - коэффициент, учитывающий магнитные свойства магнитопровода.



 

Похожие патенты:

Изобретение относится к опорным устройствам и подшипникам с постоянными магнитами и может быть использовано преимущественно для вращающихся валов и роторов машин с мало меняющейся и постоянной внешней осевой нагрузкой, таких как вентиляторы, турбокомпрессоры, электродвигатели, маховики (накопители энергии), гироскопы и т.п.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся высоконагруженных роторных машинах. Управляемый газомагнитный подшипниковый узел содержит корпус, в котором установлен вкладыш подшипника скольжения, вал, размещенный во вкладыше, электромагнитный подшипник, содержащий более одного электромагнита, полюса и ярма электромагнитов, установленные в корпусе, обмотки электромагнитов, расположенные на ярмах, датчики измерения зазора.

Изобретение касается устройства для магнитной установки вала. Устройство для установки вала (3) содержит окружающее вал (3) магнитное ярмо (1) с U-образным профилем, причем плечи U-образного профиля расположены радиально, а отверстие U-образного профиля указывает на вал (3), по меньшей мере одно первое средство (2, 9, 10) для создания магнитной цепи (4), причем магнитная цепь (4) выполнена с возможностью формирования от магнитного ярма (1) к валу (3).

Изобретение относится к подшипникам, в особенности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел (10) для ротационной машины имеет роторный вал (12), причем указанный узел содержит магнитопровод (18) статора, прикрепленный к неподвижному опорному элементу (26) и содержащий по меньшей мере один элемент (22) из ферромагнитного материала и по меньшей мере одну катушку (20), причем указанный ферромагнитный элемент и указанная по меньшей мере одна катушка помещены в защитный кольцевой корпус (24), оставляя открытыми поверхность (22а) вращения указанного ферромагнитного элемента (22) и поверхность (20а) вращения указанной по меньшей мере одной катушки (20).

Изобретение относится к подшипникам, в частности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел для ротационной машины имеет обмотку (17) ротора и магнитную обмотку (18, 44) статора, закрепленную на неподвижном опорном элементе (26, 2), имеющем по меньшей мере один элемент, выполненный из ферромагнитного материала (22, 48), и по меньшей мере одну катушку (20, 46), при этом оба эти элемента установлены в защитном кольцевом корпусе (24, 50), оставляя открытой поверхность вращения (22а, 48а) указанного ферромагнитного элемента (22, 48).

Изобретение относится к магнитным опорам цилиндрического типа на основе сверхпроводников. Магнитная опора цилиндрического типа на высокотемпературных сверхпроводниках содержит цилиндрический корпус, внутри которого расположен магнитный ротор и статор с высокотемпературными сверхпроводниками.

Изобретение относится к энергетическому машиностроению, а именно к компрессорным машинам, насосам, двигателям и т.д., имеющим опорные подшипники для вращающегося вала с нагрузочной массой.

Изобретение относится к устройствам бесконтактного электромагнитного подвеса вертикального вала ротора, более конкретно - к электромагнитным подшипникам, предназначенным для использования в различных электрических машинах с вертикальным расположением вала ротора, таких как электромеханические накопители энергии, ветрогенераторы и т.п.

Группа изобретений относится к машиностроению и может быть использована в конструкциях, включающих гибкий ротор на электромагнитных подшипниках (ЭМП). Технический результат - повышение надежности и ресурса работы гибкого ротора на ЭМП в результате увеличения степени компенсации остаточного дисбаланса за счет формирования в каждом радиальном ЭМП гибкого ротора двух дополнительных ортогональных управляющих сил, повышающих эффективность корректировки положения оси гибкого ротора в переходных режимах и определяемых с помощью предлагаемых системы и порядка управления работой гибкого ротора.

Изобретение относится к устройству магнитного подшипника. Устройство магнитного подшипника содержит первое магнитное устройство, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси, второе магнитное устройство, которое является независимым от первого магнитного устройства, для компенсации предопределенной силы, которая воздействует на вал (2), причем второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству.

Изобретение относится к опорным устройствам и подшипникам с постоянными магнитами и может быть использовано преимущественно для вращающихся валов и роторов машин с мало меняющейся и постоянной внешней осевой нагрузкой, таких как вентиляторы, турбокомпрессоры, электродвигатели, маховики (накопители энергии), гироскопы и т.п.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся высоконагруженных роторных машинах. Управляемый газомагнитный подшипниковый узел содержит корпус, в котором установлен вкладыш подшипника скольжения, вал, размещенный во вкладыше, электромагнитный подшипник, содержащий более одного электромагнита, полюса и ярма электромагнитов, установленные в корпусе, обмотки электромагнитов, расположенные на ярмах, датчики измерения зазора.

Изобретение касается устройства для магнитной установки вала. Устройство для установки вала (3) содержит окружающее вал (3) магнитное ярмо (1) с U-образным профилем, причем плечи U-образного профиля расположены радиально, а отверстие U-образного профиля указывает на вал (3), по меньшей мере одно первое средство (2, 9, 10) для создания магнитной цепи (4), причем магнитная цепь (4) выполнена с возможностью формирования от магнитного ярма (1) к валу (3).

Изобретение относится к подшипникам, в особенности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел (10) для ротационной машины имеет роторный вал (12), причем указанный узел содержит магнитопровод (18) статора, прикрепленный к неподвижному опорному элементу (26) и содержащий по меньшей мере один элемент (22) из ферромагнитного материала и по меньшей мере одну катушку (20), причем указанный ферромагнитный элемент и указанная по меньшей мере одна катушка помещены в защитный кольцевой корпус (24), оставляя открытыми поверхность (22а) вращения указанного ферромагнитного элемента (22) и поверхность (20а) вращения указанной по меньшей мере одной катушки (20).

Изобретение относится к подшипникам, в частности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел для ротационной машины имеет обмотку (17) ротора и магнитную обмотку (18, 44) статора, закрепленную на неподвижном опорном элементе (26, 2), имеющем по меньшей мере один элемент, выполненный из ферромагнитного материала (22, 48), и по меньшей мере одну катушку (20, 46), при этом оба эти элемента установлены в защитном кольцевом корпусе (24, 50), оставляя открытой поверхность вращения (22а, 48а) указанного ферромагнитного элемента (22, 48).

Группа изобретений относится к вращающимся машинам. Вращающаяся машина содержит вал (14), корпус, по меньшей мере один основной магнитный подшипник, присоединенный к валу (14) для поддержки с возможностью вращения вала внутри корпуса, по меньшей мере один первый и один второй вспомогательные подшипники (20, 22), расположенные между валом и корпусом для поддержки осевых и радиальных нагрузок, и первое и второе осевые упорные средства (44, 54), расположенные на валу ля передачи осевых нагрузок к внутренним кольцам подшипников качения.

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электрических машинах. Технический результат: состоит в повышении надежности, повышении к.п.д.

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электрических машинах. Технический результат: состоит в повышении надежности, повышении к.п.д.

Изобретение относится к магнитным опорам цилиндрического типа на основе сверхпроводников. Магнитная опора цилиндрического типа на высокотемпературных сверхпроводниках содержит цилиндрический корпус, внутри которого расположен магнитный ротор и статор с высокотемпературными сверхпроводниками.

Изобретение относится к области энергомашиностроения и может быть использовано в электромеханических преобразователях энергии на бесконтактных подшипниках. Технический результат - повышение точности управления и надежности электрической машины с ротором на бесконтактных подшипниках, возможность применения во всех типах бесконтактных подшипников и измерения перекосов ротора в осевом направлении.
Наверх