Способ получения высокоглинозёмистого цемента

Изобретение относится к области производства высокоглиноземистого цемента, в частности к его производству при комплексном использовании продуктов комбинированного безотходного обогащения низкокачественных бокситов. Технический результат изобретения - обеспечение возможности использования боксита с повышенным содержанием вредных примесей, получение высокоглиноземистого цемента с повышенной ранней прочностью и стабильностью при длительных сроках твердения цементного камня. В способе получения высокоглиноземистого цемента, включающем смешение боксита, кокса, металлического лома и известняка, с получением сырьевой смеси, при плавке которой образуются чугун и глиноземистый шлак - клинкер глиноземистого цемента, сырьевая смесь содержит высокоглиноземистый автоклавный концентрат - продукт химического обогащения в автоклаве обожженного, некондиционного по содержанию пирита и кремнезема боксита, глинозем и антрацит марки AM при следующем соотношении компонентов, мас. %: высокоглиноземистый автоклавный концентрат - 40-65, глинозем - 5-20, антрацит марки AM-0,9, металлический лом - 4, остальное известь, а плавку сырьевой смеси ведут в электродуговой печи при температуре 1450°С. 4 ил.

 

Изобретение относится к области производства высокоглиноземистого цемента, в частности к их производству при комплексном использовании продуктов комбинированного безотходного обогащения пиритизированного высококремнеземистого бемит-каолинитового боксита.

Известны способы получения высокоглиноземистых цементов путем спекания известковосодержащего компонента с глиноземом [Кравченко И.В. и др. Химия и технология специальных цементов. М.: Стройиздат, 1979], которые базируются на высокотемпературном (выше 1450°С) спекании исходных материалов и характеризуются низкой реакционной способностью сырьевой смеси.

Известна шихта для получения глиноземистого цемента, содержащая железистый боксит, известняк, железный скрап и кокс, при доменной плавке которой образуются чугун, скапливающийся в нижней части горна, и располагающийся над ним расплав глиноземистого шлака - клинкера глиноземистого цемента [Волженский А.В., Буров Ю.С., Колокольников B.C. Минеральные вяжущие вещества. - М., 1973, с. 446-449].

Известна шихта для получения глиноземистого цемента, включающая, мас. %: боксит 15-25, известняк 5-15, металлическая стружка 22-25, кокс 28-30 и шахтная порода от добычи бокситов 10-25, при доменной плавке которой образуется чугун и глиноземистый шлак - клинкер глиноземистого цемента [А.С. RU №1541265, опубл. 07.02.1990].

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу получения высокоглиноземистого цемента следует считать шихту для получения глиноземистого цемента, включающую боксит, известняк, металлический компонент, кокс, содержащую известняк марганцовистый с содержанием марганца 6-15 мас. % и металлический компонент в виде лома при следующем соотношении компонентов шихты, совместно измельченных до крупности 1-3 мм, масс. %: боксит 45-52, кокс 0,7-0,8, металлический лом 5-10, известняк - остальное [А.С.RU №2 473 478 Шихта для получения глиноземистого цемента, опубл. 27.01.2013. Бюл. №3. С1. (прототип)], которая и выбрана в качестве прототипа.

Существенным недостатком известных шихт и выбранного прототипа является то, что достаточно высокое содержание серы и кремнезема при использовании низкокачественного боксита ведет к существенным потерям основных физико-химических и физико-механических свойств шихты в процессе выплавки высокоглиноземистого клинкера.

Сера в алюмокальциевой сырьевой смеси является весьма нежелательной примесью. Во время нагрева в печи сера, содержащаяся в шихте в виде сульфидов, окисляется до сернистого газа и в итоге образует ряд сульфатов. Даже при незначительных содержаниях серы в сырье содержание сульфатов в алюминатных соединениях постепенно накапливается, пока не достигнет предельной концентрации. Это обусловлено тем, что образовавшиеся сульфаты металлов не разлагаются и не реагируют с составляющими шихты.

Проблема возникает в процессе получения высокоглиноземистого цемента из сырьевой смеси, в составе которой используют некондиционный по содержанию серы и кремнезема боксит. В процессе нагрева в печи из содержащихся в смеси соединений серы, кремнезема и железа, образуются низкоплавкие двойные и тройные соединения, которые отрицательно влияет на физико-химические и физико-механические свойства алюмокальциевого клинкера, после дробления и измельчения которого, получают конечный продукт.

Проблему, в способе получения высокоглиноземистого цемента, решают тем, что в процессе плавки сырьевой смеси используют высокоглиноземистый автоклавный концентрат, глинозем и антрацит марки AM.

Технический результат достигают за счет эффективного удаления серы из пиритизированного высококремнистого боксита, в процессе обжига в паровоздушной атмосфере, удаления кремнезема из обожженного боксита, в процессе химического обогащения в автоклаве, [Патент RU №2611871, опубл. 01.03.2017. Бюл. №7. С2], удаления железа из высокоглиноземистого шлака, в процессе электродуговой плавки автоклавного концентрата и не дефицитного, сравнительно дешевого восстановителя - антрацита марки AM, при этом дополнительно выплавляют передельный чугун.

Удаление серы, кремнезема и железа из сырьевой смеси, в процессе получения высокоглиноземистого цемента, способствует повышению физико-химических и физико-механических свойств конечного продукта.

Одновременно, с удалением серы из боксита в газовую фазу в процессе их обжига в атмосфере водяного пара, происходит гидратация алюминиевых минералов, что способствует химическому обогащению обожженного боксита в автоклаве. В процессе автоклавного выщелачивания удаляем из обожженного боксита кремнезем, и за счет получения алюминиевого концентрата с высоким содержанием глинозема и дополнительного продукта - жидкого стекла, существенно снижаем технико-экономические показатели переработки сырья.

В способе получения высокоглиноземистого цемента, включающем смешение боксита, кокса, металлического лома и известняка, с получением сырьевой смеси, при плавке которой образуются чугун и глиноземистый шлак - клинкер глиноземистого цемента, сырьевая смесь содержит высокоглиноземистый автоклавный концентрат - продукт химического обогащения в автоклаве обожженного, некондиционного по содержанию пирита и кремнезема боксита, глинозем и антрацит марки AM, при следующем соотношении компонентов, мас. %: высокоглиноземистый автоклавный концентрат - 40-65, глинозем - 5-20, антрацит марки AM - 0,9, металлический лом - 4, остальное известь, а плавку сырьевой смеси ведут в электродуговой печи при температуре 1450°С.

Для приготовления сырьевых смесей 1, 2 и 3 используют известь и антрацит марки AM, для сырьевой смеси 4 (по прототипу) известняк и кокс.Химический состав извести, мас.%: (на прокаленное вещество) СаОакт. -86,40; СаОсвзан. - 2,60; SiO2 - 3,60; CO2 - 2,00; прочие - 5,40; Химический состав известняка, мас. %: (на прокаленное вещество) СаО -54,2; CO2 - 42,6; SiO2 - 1,3; прочие - 1,9;

Химический состав кокса, мас. %: Al2O3 - 30; СаО-15; SiO2 - 45; Fe2O3 - 10;

Химический состав антрацита марки AM, мас. %: С - 88,0; Зола - 8,0; Летучие - 2,5; Влага - 1,5. Зола антрацита: Al2O3 - 20,0; SiO2 - 45,0; FeO -35,0.

На фиг. 1 приведены составы сырьевой смеси, а на фиг. 2. - химические составы компонентов сырьевых смесей.

Все составляющие компоненты сырьевой смеси подвергают дроблению до фракции 5 мм, затем - размолу до крупности 1-3 мм, после чего каждый компонент взвешивают в соответствии с составом смеси и смешивают в смесителе до получения однородной массы. Плавку сырьевых смесей проводят в электродной печи при температуре 1450°С, затем сливают в изложницы расплав - высокоглиноземистый шлак, после охлаждения его клинкер дробят и подвергают помолу до 3500 см /г, и определяют свойства полученного высокоглиноземистого цемента.

Из нижней части печи расплав чугуна сливают в песчаные формы.

Химический состав чугуна выплавленного из смеси 1-4,%:

1. 3,57 - Si; 93,07 - Fe; 1,84 - С; 1,52 - Прочие.

2. 3,80 - Si; 93,09 - Fe; 1,84 - С; 1,27 - Прочие.

3. 3,98 - Si; 93,11 - Fe; 1,84 - С; 1,07 - Прочие.

4. 15,68 - Si; 81,82 - Fe; 1,62 - С; 0,88 - Прочие.

Испытания полученного высокоглиноземистого цемента проводят по ГОСТу №969-91 на образцах - балочках 4×4×16 см.

Вышеприведенные химические составы являются предпочтительными, но допустимы колебания в составах до 10% как в сторону уменьшения, так и увеличения, в зависимости от исходного сырья, используемого на конкретном предприятии.

На фиг. 3. приведены марка цемента и химический состав клинкера, полученного из сырьевой смеси 1, 2, 3 и 4, а на фиг. 4. - физико-механические показатели цементов.

Анализ проведенных экспериментов показывает, что использование, в процессе получения высокоглиноземистых цементов, продуктов комбинированного безотходного обогащения некондиционного по содержанию серы и кремнезема высокоглиноземистого боксита, улучшает физико-химические и физико-механические свойства получаемых продуктов

- высокоглиноземистых цементов и передельного чугуна. Наблюдается краткосрочное отвердение и набор высокой прочности ВГЦ II и ВГЦ I, а также повышенная огнеупорность.

Анализ проведенных экспериментов по прототипу показывает, что использование в опытах при получении цемента некондиционного по содержанию серы и кремнезема высокоглиноземистого боксита приводит к снижению содержания моноалюмината и диалюмината (СА+СА2) в клинкере, предела прочности при сжатии через трое суток и огнеупорности цемента. По химическому составу такой цемент отвечает марке ГЦ I.

Технический результат предлагаемого изобретения:

- полученные клинкеры характеризуются полным образованием конечных фаз СаО*Al2O3 и СаО*2Al2O3, отвечают 100% завершению процессов клинкерообразования и удовлетворяют предъявляемым требованиям по физико-механическим и физико-химическим показателям цементов марки ВГЦ II и ВГЦ I.

- полученные клинкеры по прототипу характеризуются неполным образованием конечных фаз СаО*Al2O3 и СаО*2Al2O3, имеют повышенное содержание кремнезема и не удовлетворяют предъявляемым требованиям по физико-механическим и физико-химическим показателям ВГЦ.

Промышленная применимость заключается в возможности вовлечения в сферу производства высокоглиноземистого цемента пиритизированного высококремнеземистого бемит-каолинитового боксита и получения цементов марки ВГЦ II и ВГЦ I.

Предлагаемый способ получения высокоглиноземистого цемента позволяет решить вопрос повышения физико-химических и физико-механических свойств, которые находятся в прямой зависимости от повышенного содержания пирита, кремнезема и железа в конечном продукте - высокоглиноземистом клинкере и повысить эффективность комплексного использования продуктов обогащения некондиционного боксита.

Способ получения высокоглиноземистого цемента, включающий смешение глиноземсодержащего компонента, металлического лома и кальцийсодержащего компонента с получением сырьевой смеси, при плавке которой образуются чугун и клинкер высокоглиноземистого цемента, отличающийся тем, что сырьевая смесь в качестве глиноземсодержащего компонента содержит высокоглиноземистый автоклавный концентрат - продукт химического обогащения в автоклаве обожженного боксита и глинозем, в качестве кальцийсодержащего компонента известь и дополнительно антрацит марки AM при следующем соотношении компонентов, мас. %: высокоглиноземистый автоклавный концентрат - 40-65, глинозем - 5-20, антрацит марки AM - 0,9, металлический лом - 4, остальное известь, а плавку сырьевой смеси ведут в электродуговой печи при температуре 1450°С, затем сливают в изложницы расплав высокоглиноземистого клинкера, после его охлаждения клинкер дробят и подвергают помолу до 3500 см2/г с получением высокоглиноземистого цемента.



 

Похожие патенты:

Изобретение относится к цементной промышленности, в частности к способу производства цементного клинкера в виде микрошариков. Технический результат, на достижение которого направлено изобретение, заключается в повышении скорости клинкерообразования.

Изобретение относится к технологии совместного получения портландцементного клинкера и сернистого газа путем использования в качестве кальций- и сульфатсодержащего компонента природного ангидрита или отходов производства фосфорной - фосфогипс - или борной - борогипс - кислоты.

Изобретение раскрывает способ сухого помола нефтекокса, включающий добавление добавок к нефтекоксу и сухой помол нефтекокса вместе с указанными добавками, характеризующийся тем, что в качестве указанных добавок используют комбинацию по меньшей мере одной органической добавки, выбранной из группы, состоящей из алканоламинов, таких как трипропаноламин, полиолов, таких как диэтиленгликоль, полиамидов, сложных полиэфиров, простых полиэфиров, поликарбоксилатных сложных эфиров, поликарбоксилатных простых эфиров, полиоксиалкиленалкилкарбоната натрия, солей аминов, солей полиолов и их комбинаций, и по меньшей мере одной неорганической добавки, выбранной из группы, состоящей из известняка, доломитового известняка, золы-уноса, шлака, глины, латерита, боксита, железной руды, песчаника и их комбинаций, причем добавки добавляют в нефтекокс в количестве от 0,51 до 10% масс.

Изобретение раскрывает способ сухого помола нефтекокса, включающий добавление добавок к нефтекоксу и сухой помол нефтекокса вместе с указанными добавками, характеризующийся тем, что в качестве указанных добавок используют комбинацию по меньшей мере одной органической добавки, выбранной из группы, состоящей из алканоламинов, таких как трипропаноламин, полиолов, таких как диэтиленгликоль, полиамидов, сложных полиэфиров, простых полиэфиров, поликарбоксилатных сложных эфиров, поликарбоксилатных простых эфиров, полиоксиалкиленалкилкарбоната натрия, солей аминов, солей полиолов и их комбинаций, и по меньшей мере одной неорганической добавки, выбранной из группы, состоящей из известняка, доломитового известняка, золы-уноса, шлака, глины, латерита, боксита, железной руды, песчаника и их комбинаций, причем добавки добавляют в нефтекокс в количестве от 0,51 до 10% масс.

Изобретение относится к черной металлургии и может быть использовано для получения в одном технологическом процессе стали и портландцемента заданного состава. Согласно изобретению осуществляют жидкофазное восстановление чугуна, корректировку химического состава шлакового расплава, насыщение расплава известью, ускоренное охлаждение клинкера и очистку его от металлических включений с получением портландцемента.

Изобретение относится к способу переработки влажных отходов, содержащих органические вещества, в частности шламов, в установке для производства цементного клинкера, в котором сырьевую муку подогревают в подогревателе (3) в режиме противотока с горячими отходящими газами печи (2) для обжига клинкера и кальцинируют в кальцинаторе (4), работающем со сжиганием альтернативного топлива, при этом влажные отходы высушивают в сушилке (18), используя горячий газ, полученный за счет отработанной теплоты подогревателя, а высушенные отходы и отходящие газы сушилки отводят из сушилки (18), причем отходящие газы сушилки вводят в кальцинатор (4).

Изобретение относится к способу переработки влажных отходов, содержащих органические вещества, в частности шламов, в установке для производства цементного клинкера, в котором сырьевую муку подогревают в подогревателе (3) в режиме противотока с горячими отходящими газами печи (2) для обжига клинкера и кальцинируют в кальцинаторе (4), работающем со сжиганием альтернативного топлива, при этом влажные отходы высушивают в сушилке (18), используя горячий газ, полученный за счет отработанной теплоты подогревателя, а высушенные отходы и отходящие газы сушилки отводят из сушилки (18), причем отходящие газы сушилки вводят в кальцинатор (4).

Изобретение относится к способу производства цементного клинкера и к установке для его осуществления. Способ производства цементного клинкера, в котором сырьевую муку предварительно подогревают в подогревателе, используя горячие отходящие газы из клинкерной печи, при этом подогретая сырьевая мука, которая по усмотрению может быть кальцинирована в кальцинаторе, обжигается до получения клинкера в клинкерной печи, подогреватель содержит по меньшей мере одну из нескольких ветвей циклонных подвесных теплообменников, через которые последовательно протекает печной отходящий газ и в которых сырьевую муку предварительно подогревают в несколько приемов, при этом частичный поток печного отходящего газа отводят таким образом, что для предварительного подогрева сырьевой муки используется только оставшийся остаточный поток печного отходящего газа, причем отводимый частичный поток печного отходящего газа и печной отходящий поток, отводимый от последнего циклонного подвесного теплообменника (9) в направлении потока печного отходящего газа, подают на термическую утилизацию, будучи смешанными друг с другом или по отдельности.

Изобретение относится к промышленности строительных материалов и может быть использовано для производства портландцементного клинкера и серной кислоты. Способ по первому варианту включает предварительный подогрев высокосернистого цементного сырья, содержащего до 40% масс.

Изобретение относится к промышленности строительных материалов и может быть использовано для производства низкотемпературного портландцементного клинкера. Способ получения низкотемпературного портландцементного клинкера путем измельчения цементного сырья с добавлением катализатора и последующим обжигом шихты в печи обжига, при этом в качестве катализатора используют бромид Na или K или смесь бромидов металлов Ca, Na, K в количестве 0,1-15% масс.

Изобретение относится к способу изготовления геополимерных цементирующих вяжущих композиций для бетона, элементов сборных конструкций и панелей, строительных растворов, материалов для ремонтных работ.

Настоящее изобретение относится к добавке для гидравлического вяжущего, к составу цемента, бетона и раствора, способу получения бетона и раствора и к применению добавки поликарбоновой кислоты или её солей.

Настоящее изобретение относится к составу вяжущего на основе сульфоглиноземистого клинкера и портландцементного клинкера и может найти применение в промышленности строительных материалов при изготовлении бетона и строительных элементов из бетона.
Изобретение относится к области производства глиноземистого цемента. .
Изобретение относится к области производства глиноземистого цемента. .
Изобретение относится к металлургии, в частности к переработке отходов глиноземного производства - красных шламов, и может быть использовано при производстве ферросплавов.
Изобретение относится к области производства глиноземистого цемента. .

Изобретение относится к промышленности строительных материалов и может быть использовано для приготовления жаростойких бетонов и изделий на их основе, изготовления монолитных элементов футеровок тепловых агрегатов, для приготовления торкрет-масс, огнеупорных растворов и сухих смесей с температурой применения 1400-1700°С.
Изобретение относится к технологии получения специальных вяжущих материалов, а именно к производству расширяющихся и безусадочных цементов. .
Изобретение относится к способам переработки шлаков плавки алюминия и его сплавов, а также к технологиям производства строительных материалов и неорганических веществ, в частности к технологии получения основных хлоридов алюминия.

Изобретение относится к области производства высокоглиноземистого цемента, в частности к его производству при комплексном использовании продуктов комбинированного безотходного обогащения низкокачественных бокситов. Технический результат изобретения - обеспечение возможности использования боксита с повышенным содержанием вредных примесей, получение высокоглиноземистого цемента с повышенной ранней прочностью и стабильностью при длительных сроках твердения цементного камня. В способе получения высокоглиноземистого цемента, включающем смешение боксита, кокса, металлического лома и известняка, с получением сырьевой смеси, при плавке которой образуются чугун и глиноземистый шлак - клинкер глиноземистого цемента, сырьевая смесь содержит высокоглиноземистый автоклавный концентрат - продукт химического обогащения в автоклаве обожженного, некондиционного по содержанию пирита и кремнезема боксита, глинозем и антрацит марки AM при следующем соотношении компонентов, мас. : высокоглиноземистый автоклавный концентрат - 40-65, глинозем - 5-20, антрацит марки AM-0,9, металлический лом - 4, остальное известь, а плавку сырьевой смеси ведут в электродуговой печи при температуре 1450°С. 4 ил.

Наверх