Способ поверки калибратора реактивности



Способ поверки калибратора реактивности
Способ поверки калибратора реактивности
Способ поверки калибратора реактивности
Способ поверки калибратора реактивности
Способ поверки калибратора реактивности
Способ поверки калибратора реактивности
Способ поверки калибратора реактивности
H03K3/64 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2699251:

Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" (RU)

Изобретение относится к области аналого-цифровой вычислительной техники. Технический результат заключается в повышении достоверности поверки имитатора кинетики ядерного реактора. В способе задают значения реактивности и формируют мощностной параметр, изменяющийся во времени в соответствии с точечной моделью кинетики ядерного реактора для заданного значения реактивности. Поверку калибратора проводят в три этапа, на которых запускают процесс формирования мощностного параметра, затем по команде оператора останавливают процесс формирования указанного параметра в выбранной для измерения декаде, измеряют в статическом режиме время ti и производят в статическом режиме измерение достигнутого к этому моменту времени значения мощностного параметра Ризм(ti), а моменты времени ti для измерения мощностного параметра последовательно выбирают в каждой декаде изменения мощностного параметра во всем диапазоне его изменения, на втором этапе рассчитывают значения мощностных параметров с допустимой погрешностью воспроизведения реактивности калибратором относительно заданной величины, на третьем этапе сравнивают значение Ризм(ti) со значениями, заданными погрешностями, если Ризм(ti) находится в заданном диапазоне, делают заключение о том, что относительная погрешность реактивности, воспроизводимой калибратором, находится в допустимых пределах. 1 ил.

 

Изобретение относится к области аналого-цифровой вычислительной техники и может быть использовано для поверки калибраторов реактивности.

В течение жизненного цикла ядерных реакторов, в соответствии с требованиями нормативных документов, необходимо периодически проводить нейтронно-физические измерения для определения их реактивностных характеристик. С этой целью используются приборы измерения реактивности ядерного реактора - реактиметры. Для обеспечения достоверности получаемых результатов таких измерений реактиметры должны проходить своевременную поверку с использованием специальных устройств -калибраторов (имитаторов) реактивности, мощностной сигнал на выходе которых (ток или импульсы напряжения определенной частоты) изменяется во времени по закону, соответствующему точечной модели кинетики ядерного реактора с заданной реактивностью. В свою очередь, калибраторы реактивности должны быть аттестованы как тип средств измерений и своевременно проходить поверку, способ которой излагается в методике поверки, утвержденной в метрологическом центре.

Наиболее близким к предлагаемому решению является [Калибратор реактивности цифровой КРЦ-1. Методика поверки МП 2201-0022-2011. РОСТАНДАРТ. Федеральный информационный фонд по обеспечению единства измерений. Государственный реестр средств измерений. Сведения об утвержденных типах средств измерений. Номер в Госреестре 49394].

Способ поверки калибратора реактивности ядерного реактора, описанный в указанной методике, включает в себя задание значения реактивности и формирование мощностного параметра (тока или частоты импульсов напряжения), изменяющегося во времени в соответствии с точечной моделью кинетики ядерного реактора для заданного значения реактивности, измерение мощностного параметра калибратора в выбранные моменты времени в динамическом режиме, расчет мощности по формуле (1)

Pн(ti) - значение тока I(ti) или скорости счета F(ti), зависящее от времени ti, нормированное на начальное значение;

Aj - константы для заданной реактивности;

Bj - корни уравнения "обратных часов" для заданной реактивности,

вычисление относительной погрешности измеренных значений мощностного сигнала по сравнению с расчетными значениями мощностного сигнала для заданной величины реактивности в пределах двух декад изменения мощностного сигнала.

Декада изменения мощностного сигнала соответствует его изменению в 10 раз. Например, от 1 до 10, от 10 до 100, от 100 до 1000 и т.д.

Недостатком способа является низкая достоверность поверки за счет того, что она производится только в пределах двух декад изменения мощностного сигнала - мощностной сигнал во всем диапазоне его изменения разбивается на декады попарно и поверка производится последовательно в каждой паре декад. При таком подходе неизвестно, как будет меняться погрешность воспроизведения реактивности при непрерывном изменении мощностного сигнала в шести - десяти декадах, в то время как сигнал (токовый или импульсный) детектора, установленного в ядерном реакторе, может изменяться более чем в шести декадах (в импульсно-токовом режиме до 10 декад).

В способе-прототипе определяется погрешность воспроизведения мощностного сигнала, но не обосновывается связь погрешности воспроизведения мощностного сигнала с погрешностью воспроизведения реактивности в случае изменения мощностного сигнала в пределах более двух декад его изменения.

Технической проблемой, стоявшей перед авторами заявляемого технического решения, являлось создание способа поверки калибраторов реактивности, позволяющего повысить достоверность поверки за счет увеличения количества декад изменения мощностного сигнала, в которых производится поверка, до уровня, соответствующего работе детектора, установленного в ядерном реакторе, и определение точных границ погрешности, воспроизводимой калибратором реактивности, в пределах которых должна находиться реактивность, воспроизводимая калибратором во всем диапазоне изменения мощностного сигнала.

Для решения вышеизложенной проблемы и достижения указанного технического результата в известном способе поверки калибратора реактивности ядерного реактора, включающем задание значения реактивности и формирование мощностного параметра (тока или частоты импульсов напряжения), изменяющегося во времени в соответствии с точечной моделью кинетики ядерного реактора для заданного значения реактивности, измерение мощностного параметра калибратора в выбранные моменты времени и расчет мощности по формуле (1), согласно заявляемому изобретению, поверку калибратора проводят в три этапа. На первом этапе запускают процесс формирования мощностного параметра, соответствующего заданному значению реактивности, затем по команде оператора останавливают процесс формирования мощностного параметра в выбранной для измерения декаде изменения мощностного параметра, измеряют в статическом режиме время ti, прошедшее от момента запуска до момента останова, и производят в статическом режиме измерение достигнутого к этому моменту времени значения мощностного параметра Ризм(ti), а моменты времени ti для измерения мощностного параметра последовательно выбирают в каждой декаде изменения мощностного параметра во всем диапазоне его изменения. На втором этапе по формуле мощности для моментов времени ti, рассчитывают значения мощностных параметров P+δ%(ti) и P-δ%(ti), где δ% - допустимая погрешность воспроизведения реактивности калибратором относительно заданной величины, P+δ%(ti) - значение мощностного параметра для реактивности, отличающейся от заданного значения на +δ%, a P-δ%(ti) - значение мощностного параметра для реактивности, отличающейся от заданного значения на -δ%. На третьем этапе сравнивают значение Ризм(ti) со значениями P+δ%(ti) и P-δ%(ti) и если значение Ризм(ti) находится между значениями P+δ%(ti) и P-δ%(ti) делают заключение о том, что относительная погрешность реактивности, воспроизводимой калибратором, находится в допустимых пределах ±δ% и о положительных результатах поверки.

Вышеуказанные отличительные признаки позволяют повысить достоверность поверки за счет того, что:

- поверка проводится при непрерывном изменении мощностного сигнала (токового или импульсного) в диапазоне изменения, соответствующем диапазону сигнала детектора, установленного в ядерном реакторе, который может изменяться более чем в шести декадах (в импульсно-токовом режиме до 10 декад);

- при поверке определяются точные границы относительной погрешности воспроизведения заданной калибратором реактивности.

Предлагаемый способ поясняется фигурой, на которой изображена схема поверки калибратора реактивности.

Схема, представленная на фиг., включает: 1 - манипулятор, 2 - частотомер в режиме измерения длительности, 3 - калибратор реактивности, 4 - измеритель тока, 5 - частотомер в режиме измерения частоты импульсов напряжения.

Поверка калибратора производится следующим образом.

Для практической реализации способа могут быть использованы в качестве измерителя тока пикоамперметр Keithley 648, в качестве измерителей длительности процесса и частоты импульсов напряжения частотомеры CNT-90, ЧЗ-85/3, в качестве манипулятора компьютерная мышь. На калибраторе задают значение реактивности и манипулятором 1 запускают одновременно процесс формирования выходного сигнала калибратора 3, изменяющегося во времени в соответствии с моделью точечной кинетики реактора для заданного значения реактивности, и процесс измерения времени по входу «запуск отсчета» канала 1 частотомера 2. Наблюдают по табло калибратора изменение мощностного сигнала (ток в токовом режиме или частота импульсов в импульсном режиме), затем манипулятором 1 останавливают процесс формирования мощностного сигнала калибратора 3 и процесс измерения времени по входу «останов отсчета» канала 2 частотомера 2 в пределах первой декады изменения мощностного сигнала.

Измеряют достигнутое к моменту останова значение мощностного сигнала - пикоамперметром 4 значение тока Iизм(ti) в токовом режиме или частотомером 5 значение частоты импульсов напряжения Fизм(ti) в импульсном режиме. Измеряют частотомером 2 время ti, прошедшее от момента запуска формирования мощностного сигнала до момента останова. Вычисляют по формуле (1) расчетные значения мощности P+δ%(ti) для времени ti для реактивности, превышающей заданную на δ%, и расчетные значения мощности P+δ%(ti) для реактивности со значением на δ% меньше заданной, используя соответствующие значения Aj и Bj.

Сравнивают значение Ризм(ti) со значениями P+δ%(ti) и P-δ%(ti) и, если значение Ризм(ti) находится между значениями P+δ%(ti) и P-δ%(ti), делают заключение о том, что относительная погрешность реактивности, воспроизводимой калибратором, находится в допустимых пределах ±δ% и о положительных результатах поверки для первой декады изменения мощностного сигнала. Последовательно повторяют вышеперечисленные операции для второй и последующих декад изменения мощностного сигнала.

Далее последовательно повторяют все вышеперечисленные операции для других заданных значений реактивности из набора реактивностей, подлежащих поверке.

Продемонстрируем работу способа на конкретном примере для реактивности минус 1 ρ/β. В Таблице 1 приведены значения Bj и Aj для реактивностей, отличающихся от значения минус 1 ρ/β на величину δ = ±1,5%. Результаты расчета, проведенного по формуле (1) для третьей декады изменения тока калибратора (ti=207 секунд) при его начальном значении Iнач=10-3 А, приведены в Таблице 2. Там же приведено измеренное значение тока Iизм.

Продолжение Таблицы 1

Как видно из таблицы 2, измеренное значение тока в третьей декаде его изменения для заданной калибратором реактивности минус 1 ρ/β находится между расчетными значениями тока для реактивностей, отличающихся от заданного значения на ±1,5%. Из этого следует, что относительная погрешность воспроизведения реактивности калибратором находится в допустимых пределах. И, таким образом, результат поверки в этом случае является положительным.

Способ поверки калибратора реактивности ядерного реактора, включающий задание значения реактивности и формирование мощностного параметра, тока или частоты импульсов напряжения, изменяющегося во времени в соответствии с точечной моделью кинетики ядерного реактора для заданного значения реактивности, измерение мощностного параметра калибратора в выбранные моменты времени, расчет мощности по формуле

где Pн(ti) - значение тока I(ti) или скорости счета F(ti), зависящее от времени ti, нормированное на начальное значение;

Aj - константы для заданной реактивности;

Bj - корни уравнения "обратных часов" для заданной реактивности,

отличающийся тем, что поверку калибратора проводят в три этапа, на первом этапе запускают процесс формирования мощностного параметра, соответствующего заданному значению реактивности, затем по команде оператора останавливают процесс формирования мощностного параметра в выбранной для измерения декаде изменения мощностного параметра, измеряют в статическом режиме время ti, прошедшее от момента запуска до момента останова, и производят в статическом режиме измерение достигнутого к этому моменту времени значения мощностного параметра Ризм(ti), а моменты времени ti для измерения мощностного параметра последовательно выбирают в каждой декаде изменения мощностного параметра во всем диапазоне его изменения, на втором этапе по формуле мощности для моментов времени ti рассчитывают значения мощностных параметров P+δ%(ti) и P-δ%(ti), где δ% - допустимая погрешность воспроизведения реактивности калибратором относительно заданной величины, P+δ%(ti) - значение мощностного параметра для реактивности, отличающейся от заданного значения на +δ%, a P-δ%(ti) - значение мощностного параметра для реактивности, отличающейся от заданного значения на -δ%, на третьем этапе сравнивают значение Ризм(ti) со значениями P+δ%(ti) и P-δ%(ti) и, если значение Ризм(ti) находится между значениями P+δ%(ti) и P-δ%(ti), делают заключение о том, что относительная погрешность реактивности, воспроизводимой калибратором, находится в допустимых пределах ±δ% и о положительных результатах поверки.



 

Похожие патенты:

Изобретение относится к общей технике получения высоковольтных импульсов и технике получения поражающих импульсов контактных и дистанционных электрошоковых устройств.

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков.

Изобретение относится к средствам генерации псевдослучайных двоичных сбалансированных последовательностей с автокорреляционными свойствами, используемым в широкополосных системах связи, в радарах с непрерывным излучением, а также в криптографии.

Изобретение относится к радиотехнике, схемотехнике и промышленной электронике. Технический результат: повышение нагрузочной способности триггера.

Изобретение относится к области импульсной техники и может быть использовано в прецизионных генераторах импульсов. Технический результат - уменьшение задержки между импульсом внешнего запуска и началом синхронизированной тактовой последовательности, повышение точности фазовой привязки тактовых импульсов опорного генератора к импульсу внешнего запуска.

Изобретение относится к импульсной и вычислительной технике и может использоваться при построении самосинхронных триггерных, регистровых и вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к импульсной и вычислительной технике и может использоваться при построении самосинхронных триггерных, регистровых и вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к импульсной и вычислительной технике и может использоваться при построении самосинхронных триггерных, регистровых и вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к импульсной и вычислительной технике. Технический результат заключается в ускорении взаимодействия D-триггера с источником его информационного входа за счет сокращения времени, в течение которого состояние информационного входа D-триггера не должно изменяться после появления низкого уровня на его входе управления.

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Технический результат: повышение нагрузочной способности триггерного синхронного D триггера на полевых транзисторах.

Изобретение относится к устройству для обнаружения несанкционированных манипуляций системным состоянием блока управления и регулирования, в частности программируемого логического контроллера ядерной установки.

Изобретение относится к системе моделирования ядерного реактора. Технический результат заключается в автоматизации моделирования и симуляции ядерного реактора.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах автоматизированного контроля и управления АЭС для построения управляющих систем безопасности (УСБ) АЭС.

Изобретение относится к двухконтурным АЭС с турбинами, работающими на насыщенном паре. Парогазовая установка двухконтурной АЭС содержит реактор 12, основной парогенератор 11, паровую турбину с цилиндрами высокого (ЦВД) 1 и низкого давления (ЦНД) 2, соединенными между собой паропроводом с включенным в него сепаратором-пароперегревателем 3, конденсатор 4, электрогенераторы 5, конденсатный 6 и питательный 8 насос, подогреватель низкого 7 и высокого 9 давления и газовую турбину 15 с утилизационным парогенератором 17, подключенным по греющей стороне к тракту отработавших газов 16 газовой турбины 15.

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки (ЯЭУ) собственным теплом, работающей на жидкометаллическом теплоносителе в режиме переменных нагрузок.

Изобретение относится к энергоустановке с замкнутым контуром, которая вырабатывает электричество за счет тепла, получаемого от высокотемпературного ядерного реактора.

Изобретение относится к энергетике. .

Изобретение относится к анализу и оценке безопасности технологических процессов и может быть использовано, в частности, для выполнения анализа и оценки безопасности при управлении АЭС.

Изобретение относится к ядерным энергетическим установкам теплоснабжения, в которых осуществляется авторегулирование тепловой мощности в активной зоне реактора в зависимости от сезонных и суточных колебаний количества тепловой энергии, потребляемой потребителем.

Изобретение относится к области управления ядерными реакторами и может быть использовано в системах управления и защиты ядерных реакторов. Периодомер-реактиметр содержит сглаживающий фильтр, аналого-цифровой преобразователь, измеритель периода с выходом на показывающий прибор, инвертор с выходом на второй показывающий прибор, блок умножения и вычислитель реактивности с выходом на второй показывающий прибор.
Наверх