Способ получения компонента для буровых растворов

Изобретение относится к процессам нефтеперерабатывающей промышленности. Технический результат - увеличение выхода конечного продукта с одновременным удешевлением производства. Способ получения компонента для буровых растворов из нефти включает перегонку нефти с выделением фракции дизельного топлива, мазута, каталитической гидроочистки фракции дизельного топлива, причем гидроочищенную фракцию дизельного топлива направляют на изодепарафинизацию, осуществляемую при давлении 41-43 ати, образовавшийся технологический продукт направляют на фракционирование и отбирают фракцию, выкипающую в пределах 160-360°С. 1 ил., 2 табл.

 

Изобретение относится к процессам нефтеперерабатывающей промышленности, в частности к способам получения компонентов для буровых растворов из нефти, например, дистиллятных фракций или продуктов вторичной переработки нефти.

В качестве компонентов буровых растворов из нефти известно использование летнего и зимнего дизельного топлива. (Рязанов Я.А. «Энциклопедия по буровым растворам», изд. Летопись, 2005 г, стр. 154). Зимнее дизельное топливо имеет температуру вспышки порядка 30-40°С, температуру помутнения от минус 22°С до минус 28°С, предельную температуру фильтруемости от минус 32°С до минус 38°С и температуру застывания от минус 33°С до минус 40°С.

Однако, полученное зимнее дизельное топливо в силу низкой температуры вспышки, имеет недостаточную пожаробезопасность и недостаточно низкие температуры помутнения, фильтруемости и застывания, что приводит к возрастанию вязкости при низких температурах и затрудняет использование в холодных климатических условиях.

Известен способ получения зимнего дизельного топлива, включающий перегонку нефти с выделением фракции дизельного топлива, мазута, каталитической гидроочистки фракции дизельного топлива. (Патент RU №2464299).

Однако, полученное зимнее дизельное топливо в силу низкой температуры вспышки, имеет недостаточную пожаробезопасность и недостаточно низкие температуры помутнения, фильтруемости и застывания, что приводит к возрастанию вязкости при низких температурах и затрудняет использование в холодных климатических условиях.

Наиболее близким способом получения компонентов для буровых растворов является способ, включающий перегонку нефти с выделением фракции дизельного топлива, мазута, каталитической гидроочистки фракции дизельного топлива, при этом мазут направляют на вакуумную разгонку с получением вакуумного газойля, а вакуумный газойль подвергают гидрокрекингу, непревращенный остаток, полученный в процессе гидрокрекинга, направляют на изодепарафинизацию, затем на гидрофинишинг, образовавшийся технологический продукт направляют на фракционирование и отбирают фракцию, выкипающую в пределах 195-305°С (Заявка на изобретение №2017141524 с решением о выдаче патента от 25.07.2018 г).

Однако данный способ имеет следующие недостатки:

- в процессе задействованы дорогостоящие установки гидрокрекинга и изодепарафинизации непревращенного остатка гидрокрекинга при получении компонента для буровых растворов из мазута. Эти процессы идут под давлением 140-180 ати, что требует больших затрат на изготовление уникального оборудования;

- установки изодепарафинизации непревращенного остатка гидрокрекинга при получении компонента для буровых растворов из мазута имеют невысокую производительность, выход фракции, выкипающей в пределах 195-305°С, незначителен.

Целью настоящего изобретения является увеличение выхода конечного продукта при производстве компонента для буровых растворов, позволяющего значительно увеличить выпуск продукта и удешевить конечный продукт.

Поставленная цель достигается использованием способа получения компонента для буровых растворов, включающего перегонку нефти с выделением фракции дизельного топлива, мазута, каталитической гидроочистки фракции дизельного топлива, при этом гидроочищенную фракцию дизельного топлива направляют на изодепарафинизацию, осуществляемую при давлении 41-43 ати, образовавшийся технологический продукт направляют на фракционирование и отбирают фракцию, выкипающую в пределах 160-360°С. Способ осуществляют следующим образом.

На фиг. 1 представлена принципиальная схема получения компонента буровых растворов.

Нефть после процессов электрообессоливания и обезвоживания, проводимых с целью удаления содержащихся в сырье солей и воды, подают на установку атмосферной перегонки с двукратным испарением в отбензинивающую колонну (1), где в процессе фракционирования выводят с верха колонны бензин, а с низа колонны выводят частично отбензиненную нефть (2), которую после дополнительного нагрева подают в основную фракционирующую колонну (3), из колонны выводят: мазут (4), легкое дизельное топливо (5), тяжелое дизельное топливо (6), полученную при их смешении фракцию дизельного топлива (7), направляют на гидроочистку (8). Полученную гидроочищенную фракцию дизельного топлива (9), направляют на изодепарафинизацию (10). Образовавшийся технологический продукт (11) направляют на фракционирование (12) и отбирают фракцию, выкипающую в пределах 160-360°С (13), которую и используют в качества компонента для буровых растворов.

Пример 1 осуществления предлагаемого способа получения компонента буровых растворов.

На установке атмостферно-вакуумной трубчатки из отбензинивающей колонны (1) частично отбензиненную нефть (2) подают на фракционирование в основную ректификационную колонну (3), из колонны выводят мазут (4), легкое дизельное топливо (5) с температурой 250°С и тяжелое дизельное топливо (6) с температурой 305°С. Полученную при их смешении фракцию дизельного топлива (7) направляют на гидроочистку (8), которую производят при давлении 80 ати и температуре 340°С. Полученную гидроочищенную фракцию дизельного топлива (9) после стабилизации направляют на изодепарафинизацию (10), которую осуществляют при давлении 42 ати и температуре 329°С. Полученный технологический продукт (11) направляют на фракционирование (12), откуда отбирают фракцию, выкипающую в пределах 160-360°С (13), которую и используют в качестве компонента буровых растворов.

Пример 2 осуществления предлагаемого способа получения компонента буровых растворов.

На установке атмосферно-вакуумной трубчатки из отбензинивающей колонны (1) частично отбензиненную нефть (2) подают на фракционирование в основную ректификационную колонну (3), из колонны выводят мазут (4), легкое дизельное топливо (5) с температурой 250°С и тяжелое дизельное топливо (6) с температурой 305°С. Полученную при их смешении фракцию дизельного топлива (7) направляют на гидроочистку (8), которую производят при давлении 81 ати и температуре 338°С. Полученную гидроочищенную фракцию дизельного топлива (9) направляют на изодепарафинизацию (10), которую осуществляют при давлении 41 ати и температуре 332°С. Полученный технологический продукт (11) направляют на фракционирование (12), откуда отбирают фракцию, выкипающую в пределах 180-340°С (13), которую и используют в качестве компонента буровых растворов.

Пример 3 осуществления предлагаемого способа получения компонента буровых растворов.

На установке атмосферно-вакуумной трубчатки из отбензинивающей колонны (1) частично отбензиненную нефть (2) подают на фракционирование в основную ректификационную колонну (3), из колонны выводят мазут (4), легкое дизельное топливо (5) с температурой 250°С и тяжелое дизельное топливо (6) с температурой 305°С. Полученную при их смешении фракцию дизельного топлива (7) направляют на гидроочистку (8), которую производят при давлении 78 ати и температуре 343°С. Полученную гидроочищенную фракцию дизельного топлива (9) направляют на изодепарафинизацию (10), которую осуществляют при давлении 43 ати и температуре 327°С. Полученный технологический продукт (11) направляют на фракционирование (12), откуда отбирают фракцию, выкипающую в пределах 190-355°С (13), которую и используют в качестве компонента буровых растворов.

В таблицах 1 и 2 приведены свойства получаемого продукта и параметры процессов получения в сравнении с прототипом.

Как видно из таблиц 1 и 2, получаемый компонент для буровых растворов имеет свойства на уровне прототипа, но при этом предлагаемый способ получения компонента для буровых растворов имеет значительно больший выход конечного продукта, позволяет удешевить конечный продукт и увеличить производство без строительства новых установок высокого давления.

Способ получения компонента для буровых растворов из нефти, включающий перегонку нефти с выделением фракции дизельного топлива, мазута, каталитической гидроочистки фракции дизельного топлива, отличающийся тем, что гидроочищенную фракцию дизельного топлива направляют на изодепарафинизацию, осуществляемую при давлении 41-43 ати, образовавшийся технологический продукт направляют на фракционирование и отбирают фракцию, выкипающую в пределах 160-360°С.



 

Похожие патенты:

Настоящее изобретение относится к способу гидрокрекинга, объединенному с использованием вакуумной перегонки и сольвентной деасфальтизации. Способ гидрокрекинга включает следующие стадии: (a) осуществляют в реакторе гидрокрекинга гидрокрекинг тяжелого сырья с получением продукта гидрокрекинга, который разделяют на по меньшей мере два потока продуктов, включая указанный рециркуляционный поток тяжелого масла, имеющий концентрацию указанных полициклических ароматических углеводородов; (b) пропускают первую часть указанного рециркуляционного потока тяжелого масла в качестве рециркуляционного подаваемого материала в указанный реактор гидрокрекинга; (c) пропускают вторую часть указанного рециркуляционного потока тяжелого масла в установку вакуумной перегонки, в которой указанная вторая часть разделяется на по меньшей мере поток легкого вакуумного газойля, поток более тяжелого вакуумного газойля, поток некондиционного нефтепродукта/парафина и поток вакуумного остатка, при этом указанный поток легкого вакуумного газойля имеет концентрацию полициклических ароматических углеводородов, большую, чем концентрация полициклических ароматических углеводородов в указанном потоке более тяжелого вакуумного газойля; (d) пропускают указанный поток более тяжелого вакуумного газойля в качестве подаваемого материала в указанный реактор гидрокрекинга; (e) используют указанный поток легкого вакуумного газойля, имеющий указанную более высокую концентрацию полициклических ароматических соединений, в качестве сбрасываемого потока или потока продукта, который не возвращается в указанный процесс гидрокрекинга; (f) пропускают поток некондиционного нефтепродукта/парафина и поток вакуумного остатка в установку сольвентной деасфальтизации, в которой асфальтены и тяжелые полициклические ароматические углеводороды отделяются от указанных потоков с получением деасфальтированного парафинового масла, обедненного полициклическими ароматическими углеводородами; и (g) пропускают указанное деасфальтированное парафиновое масло, обедненное полициклическими ароматическими углеводородами, в качестве подаваемого материала в указанный реактор гидрокрекинга.

Изобретение относится к способу получения высокоиндексных компонентов базовых масел, соответствующих группе III и III+ по API, включающему получение базовых масел с индексом вязкости от 125 до 140.

Изобретение относится к области гидроизомеризации углеводородных потоков, особенно к гидрокрекингу и гидроизомеризации углеводородных потоков. Способ гидрокрекинга и гидроизомеризации углеводородного потока включает: гидроочистку потока углеводородного сырья, чтобы получить подвергнутый гидроочистке поток углеводородного сырья; гидрокрекинг указанного подвергнутого гидроочистке потока углеводородного сырья в первом слое катализатора гидрокрекинга, чтобы получить подвергнутый гидрокрекингу поток; гидроизомеризацию указанного подвергнутого гидрокрекингу потока в первом слое катализатора гидроизомеризации, чтобы получить гидроизомеризованный поток, причем указанную гидроизомеризацию осуществляют при более низкой температуре, чем указанный гидрокрекинг; фракционирование указанного гидроизомеризованного потока в секции фракционирования, чтобы получить первый фракционированный поток; и рециркуляцию указанного первого фракционированного потока к указанному первому слою катализатора гидроизомеризации для охлаждения закаливанием указанного подвергнутого гидрокрекингу потока и получения объединенного потока, содержащего указанный подвергнутый гидрокрекингу поток и указанный первый фракционированный поток; причем указанный подвергнутый гидрокрекингу поток подают в указанный первый слой катализатора гидроизомеризации в обход указанной секции фракционирования.

Изобретение относится к способу получения олефиновых продуктов с числом атомов углерода в диапазоне C16-C30, подходящих для использования в качестве промысловых углеводородов или для превращения в промысловые углеводороды, причем способ включает в себя: разделение олефинсодержащего конденсата Фишера-Тропша на легкую фракцию, которая представляет собой фракцию C5-C7, промежуточную фракцию, которая представляет собой фракцию C8-C15, которая содержит парафины и альфа-олефины, и тяжелую фракцию, которая представляет собой фракцию C16-C22, которая содержит парафины и альфа-олефины; олигомеризацию по меньшей мере части легкой фракции с использованием цеолитного катализатора с образованием первого олефинового продукта, который содержит разветвленные внутренние олефины; осуществление одной или обеих из стадий: (i) дегидрирования по меньшей мере части промежуточной фракции для конверсии парафинов во внутренние олефины, чтобы таким образом получить промежуточный продукт, который содержит внутренние олефины и альфа-олефины, и синтеза высших олефинов путем димеризации или метатезиса олефинов из промежуточного продукта, который содержит внутренние олефины и альфа-олефины, с образованием второго олефинового продукта; и (ii) димеризации по меньшей мере части промежуточной фракции с образованием второго олефинового продукта; и дегидрирования по меньшей мере части тяжелой фракции для превращения парафинов во внутренние олефины, чтобы тем самым получить третий олефиновый продукт, который содержит внутренние олефины, причем первый олефиновый продукт и второй олефиновый продукт являются такими, что комбинация первого олефинового продукта и второго олефинового продукта дает олефиновый продукт с по меньшей мере 50% по массе углеводородов, имеющих длину углеродной цепи от 15 до 30 атомов углерода на молекулу.
Изобретение относится к способу получения гидрированного воска, который включает в себя стадии: (a) обеспечение наличия углеводородного сырья, которое содержит больше чем 4 мас.% углеводородов, выкипающих в диапазоне от 550 до 800°C; (b) гидроочистки углеводородного сырья с использованием катализатора гидроочистки в присутствии водородсодержащего газа в условиях гидроочистки с получением продукта гидроочистки; (c) гидрокрекинг по меньшей мере части продукта гидроочистки, полученного на стадии (b), с использованием катализатора гидрокрекинга в присутствии водородсодержащего газа в условиях гидрокрекинга с получением продукта гидрокрекинга, причем катализатор гидрокрекинга содержит цеолитный компонент, который присутствует в количестве по меньшей мере 14 мас.%, в расчете на общую массу катализатора гидрокрекинга, и объемное отношение катализатора гидроочистки, используемого на стадии (b), и катализатора гидрокрекинга составляет больше чем 1; и (d) извлечения гидрированного воска из продукта гидрокрекинга, полученного на стадии (c).

Изобретение предназначено для лакокрасочной, резинотехнической, электротехнической, пищевой промышленности, а также может быть использовано при изготовлении адсорбентов.

Изобретение относится к способу улучшения свойств дистиллятного исходного сырья, характеризующегося концентрацией азота, концентрацией полиароматических соединений и цетановым индексом.

Изобретение относится к способам получения компонентов для буровых растворов. Технический результат – высокая пожаробезопасность и улучшенные низкотемпературные свойства компонента бурового раствора, а именно температура вспышки не ниже 80°C, температура помутнения порядка минус 68°C, предельная температура фильтруемости порядка минус 78°C и температура застывания порядка минус 79°C.

Изобретение относится к способу переработки сырой нефти, который включает применение определенной установки гидроконверсии. В частности, изобретение относится к способу, который позволяет оптимизировать переработку нефтяного сырья на нефтеперерабатывающем предприятии, оборудованном установкой коксования.

Настоящее изобретение относится к способу гидропереработки газойля, включающему: (а) приведение газойля в контакт с водородом и, необязательно, первым разбавителем для получения первого жидкого питающего потока, где водород растворяют в первом жидком питающем потоке; (b) приведение первого жидкого питающего потока в контакт с первым катализатором в заполненной жидкостью реакционной зоне гидрообработки для получения первого выходящего потока; (c) необязательно возврат части первого выходящего потока, которая используется в качестве всего первого разбавителя или его части в стадии (a); (d) в зоне сепарации, сепарация растворенных газов из части первого выходящего потока, не возвращенной на стадию (c), с получением продукта сепарации; (e) приведение продукта сепарации в контакт с водородом и, необязательно, вторым разбавителем с образованием второго жидкого питающего потока, где водород растворен во втором жидком питающем потоке; (f) приведение второго жидкого питающего потока в контакт со вторым катализатором в заполненной жидкостью реакционной зоне гидрокрекинга с получением второго выходящего потока; (g) необязательно возврат части второго выходящего потока, которая используется в качестве всего второго разбавителя или его части в стадии (е); и (h) в зоне перегонки, находящейся выше или ниже по технологическому потоку относительно реакционной зоны гидрокрекинга, разделение одного или нескольких продуктов перегонки и тяжелой нефтяной фракции из (1) невозвращаемой части первого выходящего потока, если зона перегонки находится выше по технологическому потоку относительно реакционной зоны гидрокрекинга, или (2) невозвращаемой части второго выходящего потока, если зона перегонки находится ниже по технологическому потоку относительно реакционной зоны гидрокрекинга.

Использование: нефтяная промышленность. Проводят закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в мазуте при следующем соотношении, мас.%: гидрофобный глинистый материал - 1,0-3,0, мазут - остальное, до 100.

Изобретение относится к нефтяной промышленности. Способ изоляции газопритоков в добывающих скважинах включает закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в гомогенной смеси отработанного масла и мазута, взятых при следующем соотношении компонентов, масс.

Группа изобретений относится к загущению растворов кислот и применению загушенных растворов кислот для гидравлического разрыва пласта. Технический результат – повышение эффективности переноса пропанта, повышение эффективности извлечения углеводородов из пласта, использование для обработки одной рабочей жидкости – кислотного геля, в случае необходимости содержащей пропант.

Изобретение относится к области бурения и строительства скважин. Технический результат - увеличение скорости бурения и проходки на долото, снижение сроков строительства скважины, экологическая безопасность, высокие триботехнические свойства, низкие фильтрационные свойства, высокая термостабильность, высокая стабильность раствора во времени.

Изобретение относится к области цементирования обсадных колонн в нефтяных, газовых и газоконденсатных скважинах, вскрывающих пласты с полиминеральными водами высокой степени минерализации, может быть также использовано для цементирования колонн в одну ступень одним составом в терригенных отложениях при наличии пресных или слабоминерализованных вод, в интервалах карбонатно-галогенных отложений, установки изоляционных цементных мостов.

Изобретение относится к эмульгаторам инвертных эмульсий и может быть использовано в нефте- и газодобывающей промышленности. Предложенный эмульгатор инвертных эмульсий содержит маслорастворимое поверхностно-активное вещество и углеводородный растворитель, отличается тем, что в качестве маслорастворимого поверхностно-активного вещества он содержит смесь моно- и/или диалкиловых эфиров фосфорной кислоты - продукт взаимодействия пятиокиси фосфора и жирных спиртов, в качестве которых используют отдельные спирты или смесь спиртов с длиной углеводородного радикала С8-С20, при следующем соотношении компонентов, мас.%: маслорастворимое поверхностно-активное вещество 20-80; углеводородный растворитель 20-80.

Группа изобретений относится к вариантам компонента и способу гидравлического разрыва пласта. Компонент содержит жидкость и множество трехмерных структур, перемешанных в жидкости.

Изобретение относится к нефтедобывающей промышленности. Технический результат – стимулирование и оптимизация процесса добычи нефти, рост эффективности воздействия на нефтегазоносный пласт, повышение безопасности при одновременном снижении затрат.

Изобретение направлено на получение керамического расклинивающего агента с высокими эксплуатационными характеристиками и низкой себестоимостью производства, что является актуальным для серийного производства за счет использования дисперсионного механизма упрочнения керамики путем дополнительного использования легкоплавкой монтмориллонитовой глины, обладающей низкой температурой спекания.

Изобретение относится к газодобывающей промышленности и может быть использовано для снижения выноса песка в газовых скважинах в начальный период эксплуатации. Технический результат - повышение эффективности способа снижения пескопроявлений в газовых скважинах с обеспечением минимального снижения потери проницаемости, повышение эффективности функционирования скважины за счет продления срока ее эксплуатации, а также упрощение и удешевление способа за счет исключения использования дорогостоящих реагентов и снижение времени проведения.

Изобретение относится к области нефтегазодобычи, в частности к технологическим составам, используемым для повышения проницаемости продуктивных пластов посредством осуществления гидроразрыва пласта, а более конкретно к капсулированным деструкторам, используемым для разрушения (разгеливания) загущенных жидкостей-гелей после гидроразрыва пласта, и к способу получения таких деструкторов, и, в частности, может быть использовано при добыче нефти и газа. Технический результат – исключение химической и пожаро-взрывоопасности, обеспечение безотходности и экологической безопасности процесса получения деструктора при сохранении его эксплуатационных свойств. Способ получения капсулированного деструктора для жидкостей разгеливания нефтяных скважин после гидроразрыва пласта, включающий смешивание порошкообразного персульфата аммония с порошкообразным сульфатом кальция при их соотношении от 0,7-1,5:1,0, гранулирование полученной смеси при распылении в качестве связующего воды в количестве от 0,1 до 0,4 по отношению к массе сульфата кальция, высушивание полученных гранул при температуре 30-40°С, формирование защитного покрытия на гранулах путем последовательного чередования процессов распыления водного раствора сополимеров метакриловой и акриловой кислот и порошка карбоната кальция или натрий-монтморелонита в количестве 1-2% от массы гранул и процесса сушки гранул до получения покрытия, составляющего 15-25% от массы гранул. Капсулированный деструктор для жидкостей разгеливания нефтяных скважин после гидроразрыва пласта, полученный указанным выше способом. 2 н.п. ф-лы, 4 пр., 1 табл.

Изобретение относится к процессам нефтеперерабатывающей промышленности. Технический результат - увеличение выхода конечного продукта с одновременным удешевлением производства. Способ получения компонента для буровых растворов из нефти включает перегонку нефти с выделением фракции дизельного топлива, мазута, каталитической гидроочистки фракции дизельного топлива, причем гидроочищенную фракцию дизельного топлива направляют на изодепарафинизацию, осуществляемую при давлении 41-43 ати, образовавшийся технологический продукт направляют на фракционирование и отбирают фракцию, выкипающую в пределах 160-360°С. 1 ил., 2 табл.

Наверх