Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга



Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга
Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга

Владельцы патента RU 2703378:

Акционерное общество "Российская самолетостроительная корпорация "МиГ" (АО "РСК "МиГ") (RU)

Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга содержит навигационно-измерительный комплекс, два масштабных блока, пять сумматоров, два нелинейных блока, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления, рулевой привод, руль высоты, два ключа, задатчик высоты круга, датчик скорости полета самолета, блок логики, соединенные определенным образом. Обеспечивается повышение безопасности пилотирования за счет ликвидации отклонений по высоте ниже заданной высоты круга, улучшение динамических характеристик. 4 ил.

 

Изобретение относится к области авиационной техники, а именно к системе автоматического управления самолетом в продольной плоскости при снижении в режиме «возврат» на аэродром на этапе стабилизации высоты круга.

Логика автоматического управления самолетом при выполнении режима «возврат» заключается в обеспечении вначале снижения по прямо-линейной траектории с углом наклона 6° к плоскости горизонта, последующего перевода в режим стабилизации постоянной высоты (т.н. высоты круга, номинальное значение которой составляет 600 м) и заключительного снижения в режиме захода на посадку по посадочной глиссаде с углом наклона 2°40' к плоскости горизонта (фиг. 1).

К процессу перехода с прямолинейной траектории снижения с углом наклона 6° к плоскости горизонта на заданную высоту круга предъявляются жесткие требования - летчиками по условиям безопасности пилотирования не допускаются отклонения по высоте («провалы») ниже высоты круга.

Известна система автоматической стабилизации заданной высоты полета самолета, использующая в своей работе сигналы угловой скорости тангажа, линейного отклонения и скорости линейного отклонения от заданной высоты (Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чикулаев М.С., Киселев Ю.Ф. Системы автоматического и директорного управления самолетом. М., Машиностроение, 1974, 232 с, рис. 2.4, с. 40). Отсутствие сигнала перегрузки в законах управления в этой системе снижает точность стабилизации высоты при ветровых возмущениях.

Другой известной системе автоматической стабилизации заданной высоты полета самолета, использующей в своей работе сигналы угловой скорости тангажа, линейного отклонения от заданной траектории и угла тангажа (Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чикулаев М.С., Киселев Ю.Ф. Системы автоматического и директорного управления самолетом. М., Машиностроение, 1974, 232 с, рис. 2.5а, с. 44), присущ тот же недостаток - заниженные характеристики ветроустойчивости (Михалев И.А., Окоемов Б.Н., Чикулаев М.С. Системы автоматической посадки. М., Машиностроение, 1975, 216 с, с. 99).

Наиболее близкой к заявляемой системе (прототипом) является система автоматического управления (САУ) самолетом при снижении, представленная в патенте RU 2542686. Данная САУ обеспечивает высокие динамические и статические характеристики процессов стабилизации на прямолинейной траектории снижения с углом наклона 6° к плоскости горизонта. Однако при переходе в режим стабилизации высоты круга системе управления, как будет показано ниже, свойственны существенные отклонения по высоте ниже заданной высоты круга. Такие «провалы» по высоте недопустимы, т.к. с точки зрения летчиков это может свидетельствовать об отказе системы управления. Кроме того, динамические характеристики процессов выхода на высоту круга оставляют желать лучшего с точки зрения перерегулирования, быстродействия и максимальных величин действующих перегрузок.

Целью изобретения является ликвидация отклонений по высоте ниже заданной высоты круга, повышение безопасности пилотирования самолетом, улучшение динамических характеристик системы автоматического управления.

Технический результат достигается тем, что система автоматического управления самолетом при снижении на этапе стабилизации высоты круга содержит навигационно-измерительный комплекс, на первом выходе которого сформирован сигнал линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал вертикальной скорости самолета, первый и второй масштабные блоки, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, рулевой привод, руль высоты самолета, соединенный с выходом рулевого привода, первый и второй нелинейные блоки, второй, третий и четвертый сумматоры, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), а навигационно-измерительный комплекс снабжен третьим выходом, на котором формируется сигнал текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса, второй выход которого соединен с первыми входами второго и четвертого сумматоров, выход первого нелинейного блока подключен к входам второго нелинейного блока и к первому входу третьего сумматора, второй инвертирующий вход которого соединен с выходом интегратора, а выход - со вторым входом второго сумматора и с первым входом блока перемножения сигналов, второй вход которого соединен с выходом второго нелинейного блока, выход четвертого сумматора подключен к входу второго масштабного блока, вход интегратора соединен с выходом второго сумматора, выход первого сумматора, формирующий сигнал заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ, выход которого соединен с входом рулевого привода, отличающаяся тем, что дополнительно содержит первый ключ, нормально замкнутый контакт которого соединен с выходом первого нелинейного блока, а выход - с входом первого масштабного блока, второй ключ, через нормально замкнутый контакт которого выход блока перемножения соединен с вторым входом четвертого сумматора, задатчик высоты круга, пятый сумматор, первый вход которого подключен к третьему входу навигационно-измерительного блока, второй инвертирующий вход - к выходу задатчика высоты круга, а выход которого соединен с нормально разомкнутым входом первого ключа, датчик скорости полета, блок логики, входы которого соединены с выходами датчика скорости и пятого сумматора, а выход подключен к управляющим входам первого и второго ключей.

Сущность изобретения поясняется графическими изображениями:

на фиг. 1 представлена схема снижения самолета в режиме возврата на аэродром;

на фиг. 2 представлена заявляемая система автоматического управления самолетом при снижении на этапе стабилизации высоты круга;

на фиг. 3 изображен переходный процесс изменения высоты полета при переходе в режим стабилизации высоты круга в системе-прототипе;

на фиг. 4 показан переходный процесс изменения высоты полета при переходе в режим стабилизации высоты круга с использованием предлагаемой системой управления.

На фиг. 1-4 использованы следующие обозначения:

1 - навигационно-измерительный комплекс;

2, 3 - первый и второй масштабные блоки соответственно;

4, 5, 6, 7 - первый, второй, третий и четвертый сумматоры соответственно;

8, 9 - первый и второй нелинейные блоки соответственно;

10 - интегратор;

11 - блок перемножения сигналов;

12 - перегрузочный автомат продольного управления (АПУ);

13 - рулевой привод;

14 - руль высоты;

15, 16 - ключи;

17 - задатчик высоты круга;

18 - пятый сумматор;

19 - датчик скорости полета самолета;

20 - блок логики;

Vy - вертикальная скорость самолета;

- сигнал оценки постоянной составляющей вертикальной скорости самолета;

ΔVy - сигнал скорости линейного отклонения самолета по высоте от заданной траектории снижения;

Δnузад _ сигнал заданной избыточной вертикальной перегрузки;

Δnу - избыточная вертикальная перегрузка;

ΔН - сигнал линейного отклонения самолета по высоте от заданной траектории снижения;

ΔНогр - ограниченный по уровню сигнал линейного отклонения самолета по высоте от заданной траектории снижения;

Н - текущая высота полета самолета;

Нзад - заданная высота полета самолета;

Нкруга - высота круга;

КΔH - масштабный коэффициент первого масштабного блока;

KVy - масштабный коэффициент второго масштабного блока;

δв - отклонение руля высоты самолета;

ВПП - взлетно-посадочная полоса;

"Ключ" - сигнал управления ключами;

t - время, с.

Заявляемая система автоматического управления самолетом (фиг. 2) содержит навигационно-измерительный комплекс 1, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета. Также система содержит первый 2 и второй 3 масштабные блоки, первый сумматор 4, входы которого подключены к выходам первого 2 и второго 3 масштабных блоков, рулевой привод 13, руль высоты 14 самолета, соединенный с выходом рулевого привода 13, первый 8 и второй 9 нелинейные блоки, второй 5, третий 6 и четвертый 7 сумматоры, интегратор 10, блок перемножения сигналов 11, перегрузочный автомат продольного управления (АПУ) 12, навигационно-измерительный комплекс 1 снабжен третьим выходом, на котором формируется сигнал Н текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока 8 подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса 1, второй выход которого соединен с первыми входами второго 5 и четвертого 7 сумматоров, выход первого нелинейного блока 8 подключен к входам второго нелинейного блока 9 и к первому входу третьего сумматора 6, второй инверторующий вход которого соединен с выходом интегратора 10, а выход - со вторым входом второго сумматора 5 и с первым входом блока перемножения сигналов 11, второй вход которого соединен с выходом второго нелинейного блока 9, выход четвертого сумматора 7 подключен к входу второго масштабного блока 3, вход интегратора 10 соединен с выходом второго сумматора 5, выход первого сумматора 4, формирующий сигнал Δnузад заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ 12, выход которого соединен с входом рулевого привода 13. Дополнительно система управления содержит первый ключ 15, нормально замкнутый контакт которого соединен с выходом первого нелинейного блока 8, а выход - с входом первого масштабного блока 2, второй ключ 16, через нормально замкнутый контакт которого выход блока перемножения 11 соединен с вторым входом четвертого сумматора 7, задатчик 17 высоты круга, пятый сумматор 18, первый вход которого подключен к третьему выходу навигационно-измерительного блока 1, второй инвертирующий вход - к выходу задатчика 17 высоты круга, выход пятого сумматора 18 соединен с нормально разомкнутым контактом первого ключа 15, датчик скорости полета 19, блок логики 20, входы которого соединены с выходами датчика скорости 19 и пятого сумматора 18, а выход блока логики 20 подключен к управляющим входам первого 15 и второго 16 ключей.

Заявляемая система автоматического управления самолетом на этапе снижения по прямолинейной траектории с углом наклона 6° к плоскости горизонта работает так же, как описано в прототипе (патент RU 2542686 C1): с помощью первого нелинейного блока 8 обеспечивается ограничение вертикальной скорости снижения самолета на уровне не выше 50 м/с, а за счет того, что на выходе сумматора 4 формируется сигнал разности ликвидируется постоянное смещение центра масс самолета относительно траектории снижения. На этом этапе командный сигнал управления формируется на выходе сумматора 4 через нормально-замкнутые контакты ключей 15 и 16 в виде

обеспечивающем требуемое качество переходных процессов стабилизации самолета на траектории снижения.

В определенный момент времени происходит переключение контактов ключей 15 и 16 в верхнее положение. Это приводит к тому, что сиг-нал заданной перегрузки на выходе сумматора 4 меняется и приобретает вид

соответствующий режиму стабилизации высоты круга.

Момент переключения ключей 15, 16 в новое (верхнее) положение определяется в соответствии с равенством (2) из условия равенства нулю сигнала заданной перегрузки и того факта, что при снижении самолета по заданной траектории с углом наклона 6° к плоскости горизонта сигнал вертикальной скорости равен

Как следует из (2), в этом случае сигнал должен иметь вполне определенное значение, равное

Таким образом, момент переключения системы управления из ре-жима снижения по заданной траектории с углом наклона 6° к плоскости горизонта в режим стабилизации высоты круга соответствует условию

Выполнение этого условия контролируется в блоке логики 20 на основании сравнения вычисленного значения (ΔНкруга)* по информации о скорости полета V, априорно заданных величинах коэффициентов KΔн и в первом и втором масштабных блоках 2 и 3 с текущим значением сигнала ΔНкруга. В случае выполнения условия (5) блок логики 20 формирует на своем выходе логический сигнал «Ключ», с помощью которого ключи 15, 16 переключаются в верхнее положение, а система управления переводится, тем самым, в режим стабилизации высоты круга.

Заявляемая система автоматического управления самолетом при снижении на этапе стабилизации высоты круга обеспечивает:

- отсутствие «просадок» по высоте относительно заданной высоты круга и повышение, за счет этого, безопасности пилотирования самолетом;

- лучшие, по сравнению с прототипом, динамические характеристики процессов выведения самолета на заданную высоту круга (за меньшее время, без перерегулирования).

Наличие этих преимуществ иллюстрируется графиками процессов вывода самолета на заданную высоту круга, представленными на фиг. 3 (прототип) и на фиг. 4 (заявляемая САУ). Графики получены в идентичных условиях: при одинаковых начальных условиях по скорости и высоте входа самолета на траекторию снижения с углом 6° к горизонту с последующим выходом на одну и ту же высоту круга ΔНкруга=600 м при одинаковых значениях коэффициентов KΔн и в первом и втором масштабных блоках 2 и 3. Из рассмотрения графиков следует, что переходные процессы по перегрузке, вертикальной скорости и по высоте в САУ-прототипе более длительны по времени, чем в заявляемой САУ, имеют значительное перерегулирование и, что неприемлемо - имеется значительный «провал» по высоте величиной 100 метров относительно высоты круга, равной 600 метров. Кроме того, вывод самолета на высоту круга осуществляется с большими по величине перегрузкой и вертикальной скоростью.

Отмеченные преимущества заявляемой САУ подтверждены летными испытаниями с положительными оценками летчиков.

Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга, содержащая навигационно-измерительный комплекс, на первом выходе которого сформирован сигнал линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал вертикальной скорости самолета, первый и второй масштабные блоки, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, рулевой привод, руль высоты самолета, соединенный с выходом рулевого привода, первый и второй нелинейные блоки, второй, третий и четвертый сумматоры, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), а навигационно-измерительный комплекс снабжен третьим выходом, на котором формируется сигнал текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса, второй выход которого соединен с первыми входами второго и четвертого сумматоров, выход первого нелинейного блока подключен к входам второго нелинейного блока и к первому входу третьего сумматора, второй инвертирующий вход которого соединен с выходом интегратора, а выход - со вторым входом второго сумматора и с первым входом блока перемножения сигналов, второй вход которого соединен с выходом второго нелинейного блока, выход четвертого сумматора подключен к входу второго масштабного блока, вход интегратора соединен с выходом второго сумматора, выход первого сумматора, формирующий сигнал заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ, выход которого соединен с входом рулевого привода, отличающаяся тем, что дополнительно содержит первый ключ, нормально замкнутый контакт которого соединен с выходом первого нелинейного блока, а выход - с входом первого масштабного блока, второй ключ, через нормально замкнутый контакт которого выход блока перемножения соединен с вторым входом четвертого сумматора, задатчик высоты круга, пятый сумматор, первый вход которого подключен к третьему входу навигационно-измерительного блока, второй инвертирующий вход - к выходу задатчика высоты круга, выход пятого сумматора соединен с нормально разомкнутым входом первого ключа, датчик скорости полета, блок логики, входы которого соединены с выходами датчика скорости и пятого сумматора, а выход блока логики подключен к управляющим входам первого и второго ключей.



 

Похожие патенты:

Группа изобретений относится к системе и способу предотвращения нарушений правил полетов беспилотными летательными аппаратами (БПЛА). Система содержит наземный центр контроля, наземные средства обнаружения подозреваемого БПЛА, БПЛА-перехватчик, содержащий бортовые средства обнаружения и средства захвата подозреваемого БПЛА.

Изобретение относится к способу построения траектории летательного аппарата (ЛА) обхода опасных зон. Для построения траектории по известным координатам начальной и конечной точек пути, направлению скорости ЛА в начальной точке, допустимому радиусу разворота, а также множеству опасных зон определенным образом решают задачу нахождения кратчайшего пути с помощью метода Дейкстры.

Изобретение относится к способу управления полетами в общем воздушном пространстве беспилотного воздушного судна (БВС). Для осуществления полетов осуществляют регистрацию БВС, включающую регистрационные параметры БВС и основные тестовые технические параметры, которые обеспечивают безопасность выполнения полета.

Изобретение относится к радиосвязи. Способ для контроля состояния летательного аппарата содержит отправку из модуля вывода в системе контроля летательного аппарата запроса контракта на передачу отчетов в авиационную электронику летательного аппарата.

Изобретение относится к способу оценивания пилотирования самолета летчиком на этапе перед касанием при посадке. Для оценивания пилотирования регистрируют параметры самолета и действий летчика штатным бортовым устройством регистрации и передают их в наземное устройство автоматизированной обработки полетной информации, формируют массив данных значений высоты и вертикальной скорости, определяют зависимость скорости снижения от высоты в определенные моменты времени, производят оценку качества пилотирования для каждой посадки в соответствии с принятыми нормативными значениями.

Группа изобретений относится к двум системам и способу сопровождения для летательных аппаратов. Каждая из систем содержит два блока связи, один из которых установлен на первом летательном аппарате, а второй блок связи на втором летательном аппарате.

Изобретение относится к области техники связи и предназначено для обеспечения независящей от положения передачи и приема данных широкофюзеляжным пассажирским самолетом, Изобретение охарактеризовано следующими шагами: установка по меньшей мере одной антенны (16), которая выполнена для коммуникации с летающим коммуникационным хабом (22), в пассажирском самолете (10) в области вблизи окна, передача и/или прием данных между по меньшей мере антенной (16) и летающим коммуникационным хабом (22) во время полета и передача данных внутри самолета (10) между антенной (16) и связанным с антенной (16) устройством (20) маршрутизации.

Изобретение относится к способам определения плановой траектории полета воздушного транспортного средства возле цели. Вычислительное устройство содержит интерфейс связи для приема значения расстояния удаленности до цели, которое обозначает расстояние от цели в точке на плановой траектории полета транспортного средства возле цели.

Группа изобретений относится к двум вариантам аэродрома, двум вариантам способа обеспечения летного поля аэродрома, способу управления движением воздушных судов на летном поле аэродрома.

Изобретение относится к логической архитектуре системы автоматизированного управления полетом беспилотного воздушного судна (БВС) в общем воздушном пространстве.

Изобретение относится к области связи. Технический результат - более точное уведомление пользователя устройства отображения о состоянии мобильного телефона.

Изобретение относится к области электротехники, в частности к схемным узлам для отключаемой оконечной нагрузки линии последовательной шины. Технический результат заключается в обеспечении подключения (установки) или отключения (отказа от) требующихся оконечных резисторов в зависимости от фактической конфигурации последовательной шины или конфигурации соответствующей шины и блока управления и в обеспечении функциональности без негативного влияния на передачу сигнала.

Изобретение относится к автоматизированным системам управления технологическими процессами производства. Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий, содержит взаимосвязанные между собой персональные компьютеры, управляющие контроллеры технологического оборудования, датчики технологических параметров процессов, сервер баз данных.

Изобретение относится к технике связи, системам автоматизации и информатики, а именно к контроллеру, выполняющему функции мониторинга и управления объектами инженерной инфраструктуры.

Изобретение относится к цифровой технике в области обмена информацией. Технический результат заключается в создании надежного асинхронного интерфейса и необходимых для его работы контроллера и оконечного устройства (ОУ), которые обеспечат обмен 32-разрядными словами с высокой скоростью передачи информации с минимальным количеством сигналов между устройствами.

Изобретение относится к интеллектуальной серверной стойке и способу управления IP-адресами. Технический результат заключается в автоматизации подключения серверов к стойке.

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении синхронизации действий мобильных технических объектов при передаче сообщений и выполнении распределенных вычислений.

Изобретение относится к области электротехники. Техническим результатом изобретения является создание системы маркировки и тестирования USB-устройств.

Изобретение относится к области вычислительной техники. Технический результат заключается в снижении сложности конструкции.

Изобретение относится к устройствам обработки запросов передачи данных памяти. Технический результат заключается в повышении пропускной способности памяти.

Изобретение относится к области судовождения, в частности к системам управления, обеспечивающим автоматическое управление движением морского подвижного объекта (МПО) по маршруту.
Наверх