Линейный электродвигатель

Изобретение относится к электротехнике, к линейным шаговым электродвигателям для дискретного электропривода. Технический результат состоит в повышении кпд и силы тяги, улучшении массогабаритных показателей. Линейный электродвигатель состоит из верхнего намагничивающего полюса 1, содержащего немагнитные вставки 3, 4, 5, и нижнего намагничивающего полюса 2 с установленным на них немагнитным каркасом 6, в котором располагается намагничивающая обмотка 7, изолированная от корпуса 8 изоляционной лентой 9. Для установки намагничивающей обмотки 7 внутри корпуса 8 используется верхняя крышка 10, закрепленная с помощью винта 11, и нижняя крышка 12, закрепленная винтом 13. Якорь 14, проходящий через верхнюю крышку 10, закреплен внутри верхнего намагничивающего полюса 1 с помощью верхнего немагнитного подшипника скольжения 15 и нижнего немагнитного подшипника скольжения 16. Между верхним немагнитным подшипником скольжения 15 и немагнитной втулкой 17 располагается возвратная пружина 18. 2 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к электрическим машинам, в частности к линейным шаговым электродвигателям, которые находят широкое применение в дискретном электроприводе.

Уровень техники

Известен линейный электродвигатель, содержащий N параллельных якорей и индуктор с цилиндрическим магнитопроводом и обмотками, концентрично размещенными относительно якорей, отличающийся тем, что магнитопровод индуктора выполнен в виде N цилиндрических магнитопроводов меньшего диаметра, соприкасающихся по образующим, а якоря соединены по обоим торцам, (см. патент РФ №2031525 Кл. Н02K 41/02, опубл. 20.03.1995).

Недостатком известной конструкции является недостаточная технологичность, трудоемкость при изготовлении, а также низкий коэффициент полезного действия.

Известен линейный электродвигатель, состоящий из статора с намагничивающими катушками и бегуна, выполненных из чередующихся магнитных и немагнитных колец и прилегающих к рабочим воздушным зазорам магнитных и немагнитных элементов вблизи каждой намагничивающей катушки, нижний предел отношения радиального и осевого размеров немагнитного элемента в осевом сечении равен 0,5:1, отличающийся тем, что верхний предел указанного отношения достигает значения 1:1 (см. патент РФ №2031518, Кл. Н02K 33/02, опубл. 20.03.1995).

Недостатком известной конструкции является недостаточно эффективная магнитная система на единицу массы и мощности, а следовательно, и низкий коэффициент полезного действия.

Наиболее близким по технической сущности и достигаемому эффекту и принятый авторами за прототип является вертикальный линейный электродвигатель, содержащий якорь, установленный в немагнитной направляющей втулке, намагничивающую обмотку и магнитопровод, включающий цилиндрическое ярмо, верхний кольцевой полюс и нижний кольцевой полюс, снабженный обхватывающим немагнитную направляющую втулку ферромагнитным цилиндром, с целью повышения плавности хода якоря, между верхним кольцевым полюсом и ферромагнитным цилиндром установлена ферромагнитная вставка в виде втулки, причем толщина верхнего кольцевого полюса и стенки ферромагнитной вставки в 5-10 раз меньше толщины стенки обхватывающего немагнитную направляющую втулку ферромагнитного цилиндра (См. авторское свидетельство СССР №743132, Кл. Н02K 33/02, опубл. 25.06.1980).

Линейный электродвигатель имеет следующие недостатки: конструкция является нетехнологичной и трудоемкой при изготовлении, обладает большими массогабаритными показателями, и низкий коэффициент полезного действия.

Раскрытие изобретения

Задачей изобретения является - разработка линейного электродвигателя, обладающего сниженными массогабаритными показателями, повышенным коэффициентом полезного действия, повышенной силой тяги.

Технический результат, который может быть получен с помощью предлагаемой конструкции, сводится к повышению коэффициента полезного действия, улучшению массогабаритных показателей, а так же повышению силы тяги, за счет применения немагнитных вставок в верхнем намагничивающем полюсе.

Технический результат достигается тем, что линейный электродвигатель, содержащий якорь, намагничивающую обмотку, а так же он дополнительно снабжен верхним и нижним намагничивающими полюсами, содержащими немагнитные вставки, верхнюю и нижнюю крышки закрепленные к корпусу с помощью винтов, установленную намагничивающую обмотку в немагнитном каркасе, при этом якорь проходящий через верхнюю крышку закреплен внутри верхнего намагничивающего полюса с помощью верхнего и нижнего немагнитного подшипника скольжения, а так же с возвратной пружиной, размещенной между верхним немагнитным подшипником скольжения и немагнитной втулкой.

Краткое описание чертежей

На фиг. 1 - представлен общий вид линейного электродвигателя.

На фиг. 2 - представлен разрез линейного электродвигателя с нанесением основных магнитных потоков.

Осуществление изобретения

Линейный электродвигатель (см. фиг. 1) состоит из верхнего намагничивающего полюса 1, нижнего намагничивающего полюса 2 содержащего немагнитные вставки 3, 4, 5 с установленным на них немагнитным каркасом 6 в котором располагается намагничивающая обмотка 7, изолированная от корпуса 8 изоляционной лентой 9. Для установки намагничивающей обмотки 7 внутри корпуса 8, используется верхняя крышка 10, закрепленная с помощью винта 11 и нижняя крышка 12, закрепленная винтом 13. Якорь 14, проходящий через верхнюю крышку 10, закреплен внутри верхнего намагничивающего полюса 1 с помощью верхнего немагнитного подшипника скольжения 15 и нижнего немагнитного подшипника скольжения 16. Между верхним немагнитным подшипником скольжения 15 и немагнитной втулкой 17 располагается возвратная пружина 18.

Предлагаемый линейный электродвигатель работает следующим образом (см. фиг.2): при отсутствии тока в намагничивающей обмотке 7 якорь 14, занимает крайнее нижнее положение, опираясь на верхний и нижний немагнитные подшипники скольжения 15, 16 и немагнитную втулку 17. При подачи на намагничивающую обмотку 7 напряжения 12 или 24 В, по ней протекает постоянный ток, который создает магнитный поток Ф замыкающийся через корпус 8, нижний намагничивающий полюс 2, якорь 14, верхний намагничивающий полюс 1 и верхнюю крышку 10. Магнитный поток Ф на границе нижнего намагничивающего полюса 2 и немагнитной вставки 5 разделяется на рабочий магнитный поток Ф1 проходящий через воздушный зазор Δ, между нижним намагничивающим полюсом 2 и якорем 14, а так же по сечению якоря 14, через воздушный зазор Δ, и шунтирующий магнитный поток Ф проходящий, по немагнитной вставке 5, далее эти потоки суммируются в верхнем намагничивающем полюсе 1. Проходя по верхнему намагничивающему полюсу 1 в месте где расположена немагнитная вставка 4 магнитный поток Ф разделяется на рабочий поток Ф2 проходящий через воздушный зазор Δ, по сечению якоря 14 через воздушный зазор Δ, и шунтирующий магнитный поток Ф, которые далее суммируются в верхнем намагничивающем полюсе 1. Проходя далее по верхнему намагничивающему полюсу 1 в месте расположения немагнитной вставки 3, происходит разделение магнитного потока Ф на рабочий магнитный поток Ф3 проходящий через воздушный зазор Δ, по сечению якоря 14, воздушный зазор Δ, и шунтирующий магнитный поток Ф которые далее суммируются в верхнем намагничивающем полюсе 1. Разделение магнитного потока Ф на рабочий поток Ф1 и шунтирующий магнитный поток Ф возникает, при применении немагнитной вставки 5, которая обладает значительно большим магнитным сопротивлением чем цепь «воздушный зазор - якорь - воздушный зазор». Разделение магнитного потока Ф на рабочие магнитные потоки Ф2, Ф3 и шунтирующие магнитные потоки Ф и Ф возникает, в случае насыщения участков намагничивающего полюса 1 сопряженных с немагнитными вставками 3, 4 и выталкивания магнитных потоков Ф2, Ф3 в сторону якоря 14. В результате прохождения через воздушный зазор Δ и якорь 14 магнитных потоков Ф1, Ф2 и Ф3 возникает электромагнитная сила, которая приводит к перемещению якоря 14 в верхнее положение. За счет наличия немагнитных вставок 3, 4, и 5, а так же соотношение толщины немагнитной вставки 4 не менее 1/3 и немагнитной вставки 3 не менее 2/3 от толщины верхнего намагничивающего полюса 1, позволяет добиться более эффективного использования магнитного потока Ф при движении якоря 14, следовательно, повышения коэффициента полезного действия, улучшение массогабаритных показателей и повышения силы тяги. После отключения напряжения от намагничивающей обмотки 7 исчезает магнитный поток Ф а следовательно и рабочие магнитные потоки Ф1, Ф2, Ф3 и шунтирующие магнитные потоки Ф, Ф и Ф, при этом якорь 14 под действием возвратной пружины 18 возвращается в крайнее нижнее положение.

По сравнению с прототипом и другими известными техническими решениями предлагаемый линейный электродвигатель имеет ряд преимуществ:

- за счет использования немагнитных вставок повышается коэффициент полезного действия;

- за счет использования немагнитных вставок улучшаются массогабаритные показатели;

- за счет использования немагнитных вставок повышается сила тяги;

- за счет разделения магнитопровода на верхний и нижний намагничивающие полюса обеспечивается плавность хода якоря.

Линейный электродвигатель, содержащий якорь, намагничивающую обмотку, отличающийся тем, что он дополнительно снабжен верхним намагничивающим полюсом, содержащим немагнитные вставки, и нижним намагничивающим полюсом, верхнюю и нижнюю крышки, закрепленные к корпусу с помощью винтов, установленную намагничивающую обмотку в немагнитном каркасе, при этом якорь, проходящий через верхнюю крышку, закреплен внутри верхнего намагничивающего полюса с помощью верхнего и нижнего немагнитного подшипника скольжения, а также с возвратной пружиной, размещенной между верхним немагнитным подшипником скольжения и немагнитной втулкой.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к линейным электродвигателям. Технический результат - повышение силы тяги и коэффициента полезного действия.

Изобретение относится к области электротехники, в частности к линейным электродвигателям. Технический результат – улучшение массогабаритных характеристик, повышение силы тяги, а также повышение КПД.

Изобретение относится к области электротехники и может быть использовано в автоматизированных электроприводах с колебательным движением рабочего органа. Технический результат - повышение надежности работы электропривода.

Изобретение относится к электротехнике. Технический результат состоит в снижении габаритов, повышении технологичности и надежности.

Изобретение относится к области машиностроения, а более конкретно к шарнирно-рычажным механизмам. Шарнирно-рычажный механизм с регулируемой длиной звеньев содержит шарнирно соединенные с неподвижной стойкой (1) и шатуном (2) ведущий кривошип (4) и ведомое коромысло (6), вращающееся вокруг шарнира (5).

Изобретение относится к области электротехники, в частности к приводному устройству. Технический результат – повышение эффективности.

Изобретение относится к электротехнике, а именно к электрическим приводам с импульсными электромагнитными двигателями возвратно-поступательного действия. Импульсный электромагнитный привод состоит из линейного электромагнитного двигателя с устройством удержания якоря, содержащего цилиндрический статор (1) с обмоткой возбуждения (2), комбинированный якорь (3), возвратную пружину (4) с предварительным поджатием, направляющий корпус (5), устройство питания (8), шунтирующий диод (9) и устройство управления (10).

Изобретение относится к прессовому оборудованию, в котором давление плунжеру или плите передается электрическим приводом с импульсным электромагнитным двигателем.

Изобретение относится к технике защиты информации, при которой осуществляется уничтожение информации как на основании получения сигналов о попытке несанкционированного проникновения, так и по желанию пользователя.

Изобретение относится к электрофизике. Технический результат состоит в снижении момента инерции во время колебания.

Изобретение относится к электротехнике, к линейным шаговым электродвигателям для дискретного электропривода. Технический результат состоит в повышении кпд и силы тяги, улучшении массогабаритных показателей. Линейный электродвигатель состоит из верхнего намагничивающего полюса 1, содержащего немагнитные вставки 3, 4, 5, и нижнего намагничивающего полюса 2 с установленным на них немагнитным каркасом 6, в котором располагается намагничивающая обмотка 7, изолированная от корпуса 8 изоляционной лентой 9. Для установки намагничивающей обмотки 7 внутри корпуса 8 используется верхняя крышка 10, закрепленная с помощью винта 11, и нижняя крышка 12, закрепленная винтом 13. Якорь 14, проходящий через верхнюю крышку 10, закреплен внутри верхнего намагничивающего полюса 1 с помощью верхнего немагнитного подшипника скольжения 15 и нижнего немагнитного подшипника скольжения 16. Между верхним немагнитным подшипником скольжения 15 и немагнитной втулкой 17 располагается возвратная пружина 18. 2 ил.

Наверх