Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к области космической техники. Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами содержит этапы, на которых:

- включают ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце;

- измеряют ток от солнечной батареи и контроль производительности солнечной батареи по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета;

- выполняют построение и поддержание в орбитальной системе координат ориентации космического аппарата;

- последовательно разворачивают солнечную батарею в фиксированные положения;

- измеряют ток от солнечной батареи в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца на витках;

- определяют текущее значение расстояния от Земли до Солнца;

- в ходе полета повторяют вышеописанные действия и контроль производительности солнечной батареи выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от солнечной батареи. Достигается повышение точности замера производительности солнечной батареи космического аппарата. 2 ил.

 

Изобретение относится к области космической техники, а именно, к системам электроснабжения (СЭС) космических аппаратов (КА) и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Одной из составляющей контроля производительности СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).

Недостаток указанного способа контроля производительности СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете используются измерения фактического выходного тока СБ, генерируемого фотоэлектрическими преобразователями (ФЭП) под воздействием солнечного излучения, при этом панели СБ выставлены таким образом, чтобы световой поток поступал перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983. стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983. стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006 - прототип), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце и контроль текущей производительности панели СБ осуществляют по результатам сравнения измеренных значений тока с задаваемыми значениями - текущая эффективность СБ оценивается по отношению измеренных фактических выходных параметров СБ к их номинальным значениям - проектным или некоторым исходным значениям, например, измеренным на предыдущих этапах полета.

Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что его сила является переменной величиной, напрямую зависит от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей, при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

Данный способ обеспечивает контроль суммарной эффективности панели СБ в ходе полета КА. Меньшие значения фактических выходных токов от СБ по отношению к заданным проектным или исходным значениям означают «деградацию» СБ.

Недостаток способа-прототипа связан с тем, что он не предусматривает проведение замера тока от СБ при одинаковых внешних полетных условиях, что необходимо для обоснованности дальнейшего сравнения результатов выполненных замеров.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности оценки текущей производительности СБ в ходе полета КА с инерционными исполнительными органами.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении одинаковых условий замера тока от СБ при контроле производительности СБ по результатам прямого замера электрического тока, генерируемого СБ на фоне штатного полета КА с инерционными исполнительными органами в базовой ориентации при устоявшемся температурном режиме СБ и минимальном влиянии подсветки от Земли.

Технический результат достигается тем, что в способе контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами, включающем ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце, измерение тока от солнечной батареи и контроль производительности солнечной батареи по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета, дополнительно выполняют построение и поддержание в орбитальной системе координат ориентации космического аппарата, при которой воздействующий на космический аппарат внешний возмущающий момент за виток достигает минимального значения, последовательно разворачивают солнечную батарею в фиксированные положения, в которых значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце составляет величину менее фиксированного значения, на последовательных витках орбиты измеряют значение угла между направлением на Солнце и нормалью к плоскости орбиты космического аппарата на моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца, измеряют ток от солнечной батареи в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца на витках, на которых достигает локального минимума модуль угла , где

λ+ - угол между нормалью к плоскости орбиты и нормалью к рабочей поверхности солнечной батареи в ее фиксированном положении, составляющем тупой угол с направлением полета и отстоящим от направления в надир на угол, ближайший к сумме углов Qz+Qa+Qs, в поддерживаемой ориентации космического аппарата;

Qz и Оs - значения угловых полурастворов видимых с космического аппарата дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с космического аппарата горизонтом Земли;

определяют текущее значение расстояния от Земли до Солнца, в ходе полета повторяют вышеописанные действия и контроль производительности солнечной батареи выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от солнечной батареи, измеренных в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца и умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца и определенным на моменты соответствующих измерений тока текущим значениям косинуса угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце.

Суть предлагаемого изобретения поясняется на фиг. 1 и 2.

На фиг. 1 представлена схема расположения направлений на Солнце и нормали к рабочей поверхности СБ относительно Земли в момент измерения тока от СБ.

На фиг. 2 представлена схема отсчета угловых полурастворов видимых с КА дисков Земли и Солнца и угла возвышения верхней границы атмосферы над видимым с КА горизонтом Земли.

На фиг. 1 и 2 введены обозначения:

K - местоположение КА;

R - радиус-вектор КА;

V - радиус-вектор КА;

P - направление в надир;

NОРБ - вектор нормали к плоскости орбиты КА;

LСБ - ось вращения СБ, перпендикулярная вектору нормали к рабочей поверхности СБ;

Н - плоскость, перпендикулярная оси вращения СБ (плоскость, в которой перемещается нормаль к рабочей поверхности СБ);

NСБ - вектор нормали к рабочей поверхности СБ;

S - вектор направления на Солнце;

α - значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце;

- угол между направлением на Солнце и нормалью к плоскости орбиты КА на момент касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца;

λ+ - угол между нормалью к плоскости орбиты и нормалью к рабочей поверхности СБ в ее фиксированном положении, составляющем тупой угол с направлением полета и отстоящим от направления в надир на угол, ближайший к сумме углов Qz+Qa+Qs, в поддерживаемой ориентации КА;

δ - угол, равный сумме углов Qz+Qa+Qs;

KD, KG, KB - направления, отстоящие от направления в надир на угол δ;

КЕ - направление, отстоящее от направления в надир на угол δ и составляющее тупой угол с направлением полета;

Zs - сфера, центр которой расположен в центре Земли и которой касаются направления, отстоящие от направления в надир на угол δ;

U - окружность, образованная точками касания сферы, центр которой расположен в центре Земли, направлениями, начинающимися в точке местоположения КА и отстоящими от направления в надир на угол δ;

ϕ - угол между направлением в надир и вектором NСБ;

ρ - угол между вектором NСБ и направлением КЕ;

С - Солнце;

Z - Земля;

А - верхняя граница атмосферы Земли;

Qz и Qs - значения угловых полурастворов видимых с КА дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с КА горизонтом Земли.

Направления KD, KG, КЕ, KB лежат на боковой поверхности конуса с вершиной в т. К и углом полураствора δ, ось которого направлена в надир. Основание конуса ограничено окружностью U, по которой сфера Zs касается боковой поверхности конуса. Точки D, G, Е, В лежат на окружности U.

Поясним предложенные в способе действия. Рассматриваем КА, например, КА типа международной космической станции (МКС), в системе управления ориентацией которых в качестве основных исполнительных органов используются инерционные исполнительные органы - силовые гироскопы (СГ). В этом случае при выполнении разворотов и при поддержании ориентации КА происходит накопление кинетического момента (КМ) СГ и по достижении КМ заданных граничных значений выполняется операция «разгрузки» СГ - приведения КМ в допустимые пределы с помощью реактивных двигателей ориентации (ДО). При этом при выполнении разгрузки СГ требуется дополнительное рабочее тело (топливо) для работы ДО.

Для реализации штатного полета таких КА, как правило, используются специальные режимы ориентации, обеспечивающие благоприятные условия для работы системы СГ - такие, чтобы максимально уменьшать эффект «насыщения» СГ и, тем самым, избегать или, по крайней мере, уменьшать необходимость их разгрузки (Бебенин Г.Г., Скребушевский Б.С., Соколов Г.А. Системы управления полетом космических аппаратов // М.: Машиностроение, 1978; Скребушевский Б.С. Управление полетом беспилотных космических аппаратов // М.: «Владмо», 2003). Одним из таких режимов ориентации является режим, при котором выполняют построение и поддержание в орбитальной системе координат ориентации КА, при которой суммарный внешний возмущающий момент - момент от воздействия на КА атмосферы и силы тяжести - за виток достигает минимального значения и обеспечивается минимальное накопление кинетического момента гиросистемы. Ввиду его экономичности данный режим ориентации используется в качестве базового (дежурного) режима ориентации в штатном полете КА.

Считаем, что на этапе выведения КА СБ находятся в сложенном состоянии и раскрываются (развертываются) на орбите. После раскрытия СБ в панель сегменты СБ, составляющие панель СБ, могут быть расположены с некоторыми остаточными (технологическими) углами между собой (поверхность панели СБ имеет ломаную структуру).

Считаем, что система управления положением СБ КА предусматривает выставку СБ в заданные положения, фиксированные в связанной с КА системе координат, а поворот СБ между данными фиксированными положениями выполняется с заданной угловой скоростью. При этом для выполнения полетных операций предусмотрены различные режимы управления ориентаций СБ, в том числе режим автоматического наведения (отслеживания) СБ на Солнце и режим выставки СБ в заданное положение (такие положения выбираются из перечня упомянутых заданных положений СБ, фиксированных в связанной с КА системе координат). При этом в режиме автоматического наведения (отслеживания) СБ на Солнце система управления автоматически выбирает момент начала поворота СБ для перевода СБ из текущего фиксированного положения СБ в последующее.

Таким образом в произвольный текущий момент времени СБ находится или в одном из фиксированных положений (в этом случае оно является текущим фиксированным положением СБ) или в процессе перехода между двумя фиксированными положениями. При этом в режиме автоматического наведения (отслеживания) СБ на Солнце моменты нахождения панели СБ в одном из фиксированных положений определяются по измерениям текущей ориентации КА и измерениям положения Солнца путем определения моментов начала и окончания поворотов СБ с учетом логики автоматического управления СБ в данном режиме.

В предлагаемом техническом решении контроль производительности СБ осуществляется в конце светового участка витка, при гарантированно установившемся температурном режиме СБ. Равновесная рабочая температура СБ определяется термомеханическими и электрическими свойствами СБ (например, может быть рассчитана по соотношениям, представленным в справочнике Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 90) и реализуется к моменту выхода на установившийся температурный режим работы СБ на освещенном участке орбиты КА. Данный режим устанавливается через определенное время после выхода КА на свет (например, 15-20 мин для СБ PC МКС) - естественно при очевидном условии, что СБ КА ориентированы на Солнце и не затенены от Солнца элементами конструкции КА.

Наряду с этим солнечное излучение, поступающее к Земле, отражается от ее поверхности, от облаков, рассеивается атмосферой. Энергия отраженного излучения, сосредоточенная в спектральном диапазоне области чувствительности солнечных элементов СБ, воспринимается СБ и увеличивает их выходную мощность. Таким образом, кроме прямого солнечного излучения на СБ попадает поток отраженного от Земли излучения, что вносит неопределенность в решение задачи контроля производительности СБ. Неопределенность при этом заключается в наличии не прогнозируемого завышения значений измеряемого тока от СБ.

Однако в моменты окончания освещенного участка орбиты КА направление потока солнечного излучения, поступающего на КА, проходит по касательной к поверхности Земли - в этом случае отраженного от Земли излучения, поступающего на СБ КА, не возникает - кроме излучения от лимба, образованного подсвеченной Солнцем атмосферой Земли, влияние которого на генерацию электроэнергии СБ пренебрежительно мало в сравнении с поступающим на СБ прямым излучением от Солнца.

Таким образом, в конце освещенного участка орбиты КА осуществляется выход на установившийся температурный режим СБ и, одновременно, отсутствует не прогнозируемое завышение значений производительности СБ от возможного попадания отраженного от Земли излучения на СБ (т.е. отсутствует негативное влияние отраженного от Земли излучения на величину подлежащей определению производительности СБ).

В предлагаемом техническом решении при контроле производительности СБ КА с инерционными исполнительными органами выполняется измерение тока от СБ при установившейся рабочей температуре СБ в конце освещенного участка орбиты в момент касания видимым с КА диском Солнца верхней границы атмосферы Земли (на заходе Солнца). При этом виток, на котором выполняется измерение тока от СБ, выбирается таким образом, что при штатном режиме автоматического наведения (отслеживания) СБ на Солнце в базовой ориентации КА (ориентации, при которой суммарный внешний возмущающий момент - момент от воздействия на КА атмосферы и силы тяжести - за виток достигает минимального значения и обеспечивается минимальное накопление кинетического момента гиросистемы) в момент касания видимым с КА диском Солнца верхней границы атмосферы Земли Солнце находится на минимальном расстоянии от нормали к рабочей поверхности СБ, а именно достигается локальный минимум модуля разности отклонений нормали к рабочей поверхности СБ и направления на Солнце от нормали к плоскости орбиты КА. Этот момент времени выбирается из условия, что направление на Солнце находится на минимальном расстоянии от плоскости Н, в которой перемещается (поворачивается) нормаль к рабочей поверхности СБ.

Момент касания видимым с КА диском Солнца верхней границы атмосферы Земли определяется условием

μ=Qz+Qa+Qs,

где μ - текущий угол между направлением на Солнце и направлением в надир,

Qz и Qs - значения угловых полурастворов видимых с КА дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с КА горизонтом Земли;

как наиболее поздний момент времени на освещенной части витка орбиты, когда КА освещен излучением от полного солнечного диска (выполнение данного условия отображено на фиг. 2). В более ранние моменты определяемая производительность СБ завышается за счет проявления эффекта дополнительного поступления на СБ отраженного от Земли излучения, а в более поздние моменты - неопределенным образом изменяется (занижается) за счет проявления эффекта преломления атмосферой Земли поступающего на СБ солнечного излучения.

Слой атмосферы Земли, который рассеивает поступающее на КА излучение от Солнца, задается высотой своей верхней границы от поверхности Земли Нa (Крошкин М.Г. Физико-технические основы космических исследований. - М.: Машиностроение. 1969). Определение угла Qa может быть осуществлено, например, по соотношению

.

,

где Rz - радиус Земли;

Норб - высота орбиты КА.

Определение угла Qs может осуществляться, например, по методике, используемой при расчете таблиц видимого радиуса Солнца в Астрономических ежегодниках.

В предлагаемом техническом решении для решения поставленной задачи выполняют построение и поддержание в орбитальной системе координат ориентации КА, при которой воздействующий на КА внешний возмущающий момент за виток достигает минимального значения.

Реализуют штатный режим автоматического наведения (отслеживания) СБ на Солнце последовательным разворотом солнечной батареи в фиксированные положения, в которых значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце составляет величину менее фиксированного значения, как правило равного половине величины угла d, где d=360°/N, а N - число фиксированных положений СБ.

На последовательных витках орбиты измеряют значение угла между направлением на Солнце и нормалью к плоскости орбиты КА на моменты касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца.

Измеряют ток от СБ в моменты касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца на витках, на которых достигает локального минимума модуль угла , где

λ+ - угол между нормалью к плоскости орбиты и нормалью к рабочей поверхности СБ в ее фиксированном положении, составляющем тупой угол с направлением полета и отстоящим от направления в надир на угол, ближайший к сумме углов Qz+Qa+Qs, в поддерживаемой ориентации КА.

На фиг. 1 представлена схема расположения направлений на Солнце и нормали к рабочей поверхности СБ относительно Земли в момент измерения тока от СБ, которая иллюстрирует, что виток, на котором выполняется измерение тока от СБ, выбран из условия максимальной близости углов γ+и . В этот момент времени направление на Солнце находится на минимальном расстоянии от плоскости Н, в которой перемещается (поворачивается) нормаль к рабочей поверхности СБ. Разность между данными углами λ+ и не превышает половины величины изменения угла за виток, что для орбит КА типа МКС составляет ≈2,5°.

Таким образом, в момент измерения тока от СБ видимый с КА диск Солнца касается верхней границы атмосферы Земли и находится на минимальном расстоянии от нормали к рабочей поверхности СБ - угол α между направлениями S и NСБ не превышает величину угла ρ

где ρ - угол между направлением, составляющем тупой угол с направлением полета и отстоящим от направления в надир на угол Qz+Qa+Qs и нормалью к рабочей поверхности СБ в ее фиксированном положении, составляющем минимальный угол к вышеупомянутым направлением в поддерживаемой ориентации КА.

Например, величина угла d при числе фиксированных положений СБ N=16 (например, для СБ КА типа модуля «Звезда» МКС) составляет 22,5°, откуда следует, что угол α между направлениями S и NСБ не превышает величину 11,25°

Отклонение α от ρ определяется величиной отклонения оси вращения СБ от перпендикуляра к плоскости орбиты КА. Например, при управлении КА типа МКС в базовой ориентации КА отклонение оси вращения СБ от перпендикуляра к плоскости орбиты как правило не превышает величину ≈10° и следовательно

Определяют текущее значение расстояния от Земли до Солнца.

В ходе полета повторяют вышеописанные действия и контроль производительности СБ выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от СБ, измеренных в моменты касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца и умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца и определенным на моменты соответствующих измерений тока текущим значениям косинуса угла между нормалью к рабочей поверхности СБ и направлением на Солнце.

Таким образом, измеренное значение тока от СБ преобразуем по формуле (обозначим преобразованное значение тока как контрольный параметр Ik)

где Dср - фиксированное номинальное (среднее) значение расстояния от Земли до Солнца;

Dk - текущее значение расстояния от Земли до Солнца;

I - измеренное значение тока;

α - значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце на момент измерения тока.

В соотношении (4) деление на текущее значение косинуса угла между нормалью к рабочей поверхности СБ и направлением на Солнце обеспечивает одинаковые условия замера тока от СБ в части учета изменений тока от СБ, вызванных отклонением направления солнечного излучения от нормали к СБ. При этом учитывается, что текущий ток I от СБ определятся выражением (Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983)

I=IMAXcosα,

где IМАХ - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панели СБ перпендикулярно солнечным лучам.

При этом, с одной стороны, учитывая соотношения (1), (2) cosα составляет величину 0,98, результат учета которой может быть сравним с точностью измерения тока от СБ. В этом случае можно принять cosα≈1, соотношение (4) принимает вид

и контроль производительности СБ выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от СБ, измеренных в моменты касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца и умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца.

С другой стороны, для КА типа МКС выполняется условие (3) и в (4) угол α можно заменить углом ρ, который однозначно определяется базовой ориентацией КА. В этом случае (4) принимает вид

и контроль производительности СБ выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от СБ, измеренных в моменты касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца и умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца и значению косинуса угла ρ между направлением, составляющем тупой угол с направлением полета и отстоящим от направления в надир на угол Qz+Qa+Qs, и нормалью к рабочей поверхности солнечной батареи в ее фиксированном положении, составляющем минимальный угол с вышеупомянутым направлением в поддерживаемой ориентации космического аппарата.

В соотношениях (4)÷(6) умножение на квадрат текущего значения расстояния от Земли до Солнца обеспечивает одинаковые условия замера тока от СБ в части учета изменений тока от СБ, вызванных отклонением текущего значения внеатмосферной интенсивности солнечной радиации от фиксированного номинального (среднего) значения. При этом учитывается, что текущее значение внеатмосферной интенсивности солнечной радиации с достаточной степенью точности обратно пропорционально значению расстояния от Земли до Солнца (Макарова Е.А., Харитонов А.В., Распределение энергии в спектре Солнца и солнечная постоянная, М., 1972; Поток энергии Солнца и его изменения, под ред. О. Уайта, пер. с англ., М., 1980; Кмито А.А., Скляров Ю.А., Пиргелиометрия, Л.)

Вср - фиксированное номинальное (среднее) значение внеатмосферной интенсивности солнечной радиации;

Bk - текущее значение внеатмосферной интенсивности солнечной радиации.

В ходе полета повторяют вышеописанные действия на различных этапах полета КА, для каждого этапа полета получают значения контрольного параметра, рассчитываемые по соотношениям (4)÷(6), и контроль текущей производительности СБ осуществляют по результатам сравнения получаемых значений данного контрольного параметра.

Опишем технический эффект предлагаемого изобретения.

При эксплуатации в открытом космосе СБ подвергаются воздействию факторов открытого космического пространства, что приводит к их постепенной «деградации». Контроль производительности панели СБ, в частности, связан с получением текущих значений параметров производительности панели СБ и количественных оценок ее текущей эффективности.

Предлагаемое техническое решение позволяет обеспечить одинаковые условия замера тока от СБ при контроле производительности СБ по результатам прямого замера электрического тока, генерируемого СБ на фоне штатного полета КА с инерционными исполнительными органами в базовой ориентации при устоявшемся температурном режиме СБ и минимальном влиянии подсветки от Земли.

При этом обеспечиваются одинаковые условия замера тока от СБ с учетом изменений тока от СБ, вызванных как изменениями текущего значения внеатмосферной интенсивности солнечной радиации и наличием эффекта подсветки СБ уходящим от Земли излучением, так и отклонением направления солнечного излучения от нормали к СБ и наличием технологических углов между сегментами панели СБ. В том числе при контроле производительности СБ освещение СБ обеспечивается по направлению, минимально отклоненному от нормали к рабочей поверхности СБ, что одновременно минимизирует различие условий освещения различных сегментов панели СБ и минимизирует влияние возможных методических погрешностей учета угла отклонения Солнца от нормали к рабочей поверхности СБ.

Предлагаемое техническое решение позволяет увеличить точность контроля производительности СБ за счет учета температурного режима СБ (а именно, обеспечения контроля производительности СБ при установившейся рабочей температуре СБ), а также за счет минимизации (исключения) влияния отраженного от Земли излучения для выработки электроэнергии, чем устраняется не прогнозируемое завышение текущих измеряемых значений тока от СБ. При этом в предлагаемом техническом решении контроль производительности СБ выполняется в базовой (дежурной) ориентации и не требует проведения специальных полетных операций (режимов) контроля производительности СБ, выполняемых, как правило, в специальной ориентации КА и сопровождающихся затратами рабочего тела на работу двигателей ориентации.

Одинаковые условия замера тока от СБ позволяют получать сопоставимые данные в разные моменты полета КА, обоснованно сравнивать получаемые измерения и судить по ним об изменениях и текущей производительности СБ.

Знание текущих значений параметров производительности СБ необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ при решении различных задач управления полета КА, а также своевременно выявлять моменты снижения эффективности СБ. Таким образом, получаемый технический эффект повышает эффективность контроля производительности СЭС КА, в том числе позволяет получить оценки текущей эффективности СБ на фоне штатного полета КА с инерционными исполнительными органами.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами, включающий ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце, измерение тока от солнечной батареи и контроль производительности солнечной батареи по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета, отличающийся тем, что дополнительно выполняют построение и поддержание в орбитальной системе координат ориентации космического аппарата, при которой воздействующий на космический аппарат внешний возмущающий момент за виток достигает минимального значения, последовательно разворачивают солнечную батарею в фиксированные положения, в которых значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце составляет величину менее фиксированного значения, на последовательных витках орбиты измеряют значение угла между направлением на Солнце и нормалью к плоскости орбиты космического аппарата на моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца, измеряют ток от солнечной батареи в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца на витках, на которых достигает локального минимума модуль угла , где

λ+ - угол между нормалью к плоскости орбиты и нормалью к рабочей поверхности солнечной батареи в ее фиксированном положении, составляющем тупой угол с направлением полета и отстоящим от направления в надир на угол, ближайший к сумме углов Qz+Qa+Qs, в поддерживаемой ориентации космического аппарата;

Qz и Qs - значения угловых полурастворов, видимых с космического аппарата дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с космического аппарата горизонтом Земли;

определяют текущее значение расстояния от Земли до Солнца, в ходе полета повторяют вышеописанные действия и контроль производительности солнечной батареи выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от солнечной батареи, измеренных в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца и умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца и определенным на моменты соответствующих измерений тока текущим значениям косинуса угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце.



 

Похожие патенты:

Использование: в области электротехники, для электропитания космических аппаратов (КА). Технический результат - повышение функциональной надежности системы электропитания.
Панель солнечной батареи содержащая каркас, выполненный из упругих элементов и фотопреобразователей, при этом согласно изобретению фотопреобразователи имеют форму трапеций, а каркас выполнен в виде упругих колец различного диаметра, расположенных концентрично и равномерно, каждый фотопреобразователь закреплен своим основанием на двух соседних кольцах каркаса, а размеры фотопреобразователей, форма трапеций и особенности их крепления на каркасе выбраны исходя из возможности трансформации каркаса от плоской поверхности в полусферу.

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА.

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА.

Изобретение относится к гелиоэнергетике космических аппаратов (КА) с солнечным парусом (СП). Развертываемый СП выполнен из одной или более полос плоской пленки, на которых размещена пленочная солнечная батарея (СБ).

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Группа изобретений относится к внешним развертываемым элементам космического аппарата (КА), например панелям солнечных батарей или антенн, устанавливаемым преимущественно на малогабаритных спутниках.
При управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого участка при неисправном бортовом компьютере, по сигналу таймера космический аппарат переводят в режим работы с использованием автономного контура управления, а при исправном бортовом компьютере по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарата осуществляют по информации исправного бортового компьютера. Обеспечивается ориентация панелей солнечных батарей относительно направления на Солнце после выхода из орбитального теневого участка даже при сбое в работе бортового компьютера.
Изобретение относится к способу управления автономной системой электроснабжения космического аппарата. Для этого управляют стабилизатором напряжения и зарядно-разрядными устройствами в зависимости от входного и выходного напряжения системы при контроле степени заряженности и разряженности аккумуляторных батарей в блоке, выдают запрет на работу соответствующего зарядного устройства при достижении предельного уровня заряженности данной аккумуляторной батареи, снимают запрет при достижении определенного уровня разряженности данной аккумуляторной батареи, запрещают работу соответствующего разрядного устройства при достижении предельного уровня разряженности данной аккумуляторной батареи, снимают этот запрет при достижении определенного уровня заряженности данной аккумуляторной батареи, контролируют ток солнечной батареи, снимают блокировку работы преобразователя напряжения после превышения тока солнечной батареи заранее заданного значения, при аварийном разряде аккумуляторных батарей, в зависимости от величины их остаточной емкости включают режим аварийного экономичного разряда аккумуляторных батарей и, при необходимости, включают блок автономного управления приводом солнечной батареи для получения солнечной батареей максимальной освещенности от Солнца, а в случае не устранения аварийного режима, блокируют работу всех разрядных устройств. Обеспечивается повышение надежности и живучести системы электроснабжения космического аппарата. 1 ил.
Наверх