Способ ориентации космического аппарата

При управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого участка при неисправном бортовом компьютере, по сигналу таймера космический аппарат переводят в режим работы с использованием автономного контура управления, а при исправном бортовом компьютере по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарата осуществляют по информации исправного бортового компьютера. Обеспечивается ориентация панелей солнечных батарей относительно направления на Солнце после выхода из орбитального теневого участка даже при сбое в работе бортового компьютера.

 

Изобретение относится к области космической техники и может быть использовано на любых космических аппаратах (КА) для обеспечения ориентации на Солнце при нештатной работе КА.

Известен способ ориентации искусственного спутника Земли, реализованы спутником с трехосной стабилизацией углового положения, имеющий ось тангажа, ориентируемую строго перпендикулярно плоскости орбиты, и содержащий, по меньшей мере, одну поверхность предназначенную главным образом для того, чтобы на нее воздействовало солнечное давление, при этом управление ориентации спутника происходит с использованием бортового компьютера (патент RU №2114770).

Недостатком данного способа является то, что в нем решена проблема обеспечения живучести космического аппарата при сбое в работе бортового компьютера.

Известен способ ориентации искусственного спутника Земли с использованием бортового компьютера, связанного с системой определения угловых положений корпуса аппарата относительно осей ориентации и активного управления угловыми положениями, включающий ориентацию искусственного спутника Земли относительно направления на Солнце и на Землю, отличающийся тем, что дополнительно предусматривают автономный контур управления ориентацией искусственного спутника Земли относительно направления на Солнце и при нарушении текущей точности ориентации искусственного спутника Земли на Солнце ориентацию искусственного спутника Земли относительно направления на Солнце и направления на Землю с использованием бортового компьютера временно прекращают, при этом включают в работу автономный контур управления ориентацией искусственного спутника Земли относительно направления на Солнце, с соответствующей установкой солнечных батарей в фиксированное положение относительно корпуса искусственного спутника Земли для получения максимальной их освещенности, а последующее возобновление ориентации искусственного спутника Земли с использованием бортового компьютера осуществляют по радиокоманде с Земли (патент RU №2544021).

Описанный способ принят за прототип изобретения.

На большинстве типов орбит есть теневые участки, как от Земли, так и от Луны, при прохождении которых на космическом аппарате наступает отрицательный энергобаланс. Параметры тени (время начала и окончания) для каждого витка рассчитывает бортовое баллистическое программное обеспечение.

Основным недостатком прототипа, является то, что если при штатном функционировании КА во время прохождения теневого участка произойдет сбой в работе бортового компьютера («зависание»), то не будет информации об окончании теневого участка и КА не перейдет в режим работы с использованием автономного контура управления. Следовательно, космический аппарат потеряет ориентацию на Солнце и Землю. Это может привести к выходу КА из строя.

Выходом из сложившейся ситуации может быть запуск таймера в блоке управления КА перед входом в теневой участок, по срабатыванию которого КА перейдет на автономный контур управления ориентацией КА.

Для заявленного способа выявлены следующие общие существенные признаки: ориентация космического аппарата относительно направления на Солнце и Землю с использованием бортового компьютера по информации датчиков определения углового положения; ориентация космического аппарата относительно направления на Солнце с использованием дополнительного автономного контура управления, подключаемого к управлению при нарушении ориентации космического аппарата относительно направления на Солнце по информации системы электропитания, с соответствующей установкой солнечных батарей в фиксированное положение относительно корпуса космического аппарата.

Поскольку на большинстве типов орбит есть теневые участки, то в основу настоящего изобретения положена техническая проблема создания способа ориентации космического аппарата, позволяющего обеспечить ориентацию панелей солнечных батарей относительно направления на Солнце после выхода из теневого участка при сбое в работе бортового компьютера.

Поставленная техническая проблема решается следующим образом.

Заявлен способ ориентации космического аппарата, включающий ориентацию космического аппарата относительно направления на Солнце и Землю с использованием бортового компьютера по информации датчиков определения углового положения, ориентацию космического аппарата относительно направления на Солнце с использованием дополнительного автономного контура управления, подключаемого к управлению при нарушении ориентации космического аппарата относительно направления на Солнце по информации системы электропитания, с соответствующей установкой солнечных батарей в фиксированное положение относительно корпуса космического аппарата, отличающийся тем, что при управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого участка при неисправном бортовом компьютере, по сигналу таймера космический аппарат переводят в режим работы с использованием автономного контура управления, а при исправном бортовом компьютере по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарат осуществляют по информации исправного бортового компьютера.

Сущность изобретения.

На большинстве типов орбит есть теневые участки, как от Земли, так и от Луны, при прохождении которых на космическом аппарате наступает отрицательный энергобаланс. Параметры тени (время начала и окончания) для каждого витка рассчитывает бортовое баллистическое программное обеспечение.

Если при штатном функционировании КА во время прохождения теневого участка произойдет сбой в работе бортового компьютера, то полностью перестанет функционировать все программное обеспечение, и не будет информации об окончании теневого участка. Следовательно, космический аппарат начнет терять ориентацию. А поскольку бортовой компьютер неисправен, то по выходу из теневого участка КА не будет сформирован признак окончания теневого участка. В результате космический аппарат не сможет восстановить ориентацию панелей солнечных батарей на Солнце, что, в свою очередь, приведет к разряду аккумуляторных батарей и выходу из строя КА.

Поэтому в блоке управления космическим аппаратом предусмотрен таймер, с продолжительностью, равной максимальной продолжительности теневого участка, который запускают при входе в теневой участок. Если бортовой компьютер исправен, то после выхода КА из теневого участка по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарат осуществляют по информации исправного бортового компьютера. Если во время прохождения теневого участка происходит сбой в работе бортового компьютера, то это приводит к потере космическим аппаратом ориентации. Поэтому при сбое в работе бортового компьютера, после выхода космического аппарата из теневого участка, при срабатывании таймера, космический аппарат переходит в режим работы с использованием автономного контура управления и осуществляет поиск Солнца с последующей ориентацией панелей солнечных батарей на Солнце. Данная логика позволяет своевременно обеспечить положительный энергобаланс космического аппарата.

Таким образом, заявленное изобретение позволяет обеспечить ориентацию панелей солнечных батарей относительно направления на Солнце после выхода из орбитального теневого участка при сбое в работе бортового компьютера.

Способ ориентации космического аппарата, включающий ориентацию космического аппарата относительно направления на Солнце и Землю с использованием бортового компьютера по информации датчиков определения углового положения, ориентацию космического аппарата относительно направления на Солнце с использованием дополнительного автономного контура управления, подключаемого к управлению при нарушении ориентации космического аппарата относительно направления на Солнце по информации системы электропитания, с соответствующей установкой солнечных батарей в фиксированное положение относительно корпуса космического аппарата, отличающийся тем, что при управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого участка при неисправном бортовом компьютере, по сигналу таймера космический аппарат переводят в режим работы с использованием автономного контура управления, а при исправном бортовом компьютере по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарата осуществляют по информации исправного бортового компьютера.



 

Похожие патенты:
Изобретение относится к области космической техники. Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами содержит этапы, на которых:- включают ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце;- измеряют ток от солнечной батареи и контроль производительности солнечной батареи по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета; - выполняют построение и поддержание в орбитальной системе координат ориентации космического аппарата;- последовательно разворачивают солнечную батарею в фиксированные положения;- измеряют ток от солнечной батареи в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца на витках;- определяют текущее значение расстояния от Земли до Солнца;- в ходе полета повторяют вышеописанные действия и контроль производительности солнечной батареи выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от солнечной батареи.

Использование: в области электротехники, для электропитания космических аппаратов (КА). Технический результат - повышение функциональной надежности системы электропитания.
Панель солнечной батареи содержащая каркас, выполненный из упругих элементов и фотопреобразователей, при этом согласно изобретению фотопреобразователи имеют форму трапеций, а каркас выполнен в виде упругих колец различного диаметра, расположенных концентрично и равномерно, каждый фотопреобразователь закреплен своим основанием на двух соседних кольцах каркаса, а размеры фотопреобразователей, форма трапеций и особенности их крепления на каркасе выбраны исходя из возможности трансформации каркаса от плоской поверхности в полусферу.

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА.

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА.

Изобретение относится к гелиоэнергетике космических аппаратов (КА) с солнечным парусом (СП). Развертываемый СП выполнен из одной или более полос плоской пленки, на которых размещена пленочная солнечная батарея (СБ).

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу.

Изобретение относится к построению одно- или многоярусных спутниковых систем (СС) непрерывного глобального обзора околоземного пространства с заданными кратностью и периодичностью.

Изобретение относится к построению и преобразованию спутниковых систем (СС) обзора околоземного пространства, имеющего вид сферического слоя с заданными кратностью и периодичностью.

Изобретение относится к ракетной технике, а более конкретно к выведению на орбиту груза ракетой-носителем. Способ выведения полезного груза на околоземные орбиты с помощью космической ракеты-носителя включает последовательную работу разгонных ступеней и отделение полезного груза с использованием толкателей.

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния.

Изобретение относится к области регулирования расхода текучей среды и, в частности, касается устройства (109) регулирования расхода, содержащего входную камеру (206), выходную камеру (207), множество электропроводящих капиллярных каналов (201-205), соединяющих гидравлически и параллельно входную камеру (206) и выходную камеру (207), первую и вторую электрические клеммы (208, 209), выполненные с возможностью соединения с источником электрического тока, и по меньшей мере один электрический переключатель (210a, 210b, 211a, 211b), расположенный таким образом, чтобы выборочно подсоединять один или несколько указанных капиллярных каналов (201-205) между электрическими клеммами (208, 209).

Изобретение относится к космической технике. Способ воздействия на космические объекты включает воздействие мелкодисперсными частицами посредством их распыления на космические объекты, при этом воздействие осуществляют заряженными мелкодисперсными частицами, которые заряжают статическим электричеством со знаком заряда, противоположным знаку заряда космических объектов.

Изобретение относится к двигательным системам для маневрирования и ориентации, преимущественно малых (нано- и пико-) спутников. Система, связанная штангой (57) со спутником (58), содержит круглую (1) и кольцеобразную (2) термостойкие диэлектрические подложки.

Изобретение относится к области машиностроения, а более конкретно к утилизации космического мусора. Космический комплекс для утилизации группы объектов космического мусора состоит из базового космического аппарата и нескольких тормозных двигательных модулей.

Шпангоут // 2694486
Изобретение относится к конструкции летательных аппаратов, а именно к конструкции шпангоутов, обеспечивающих восприятие распределенных и сосредоточенных нагрузок в узлах стыка отсеков летательных аппаратов с различными поперечными размерами.
Изобретение относится к управлению сближением и соединением космического аппарата (КА) с космическим мусором (КМ). Устройство содержит систему фиксации КМ на КА, снабженную постоянным магнитом, притягивающимся к магнитному веществу (например, на поверхности КА), и электромагнитом, отталкивающим (с регулируемым усилием) постоянный магнит в направлении КМ.
Изобретение относится к области космической техники. Способ определения ориентации космического аппарата по сигналам навигационных спутников содержит этапы, на которых: включают излучение радиосигналов навигационными спутниками с известными параметрами орбиты; формируют и выдают команды на прием сигналов выбранных навигационных спутников на каналы приемного устройства, установленного на космическом аппарате; выделяют каждым каналом приемного устройства из суммарного сигнала всех навигационных спутников сигналы спутников, соответствующих выданным командам; принимают эти сигналы при условии нахождения соответствующих спутников в поле зрения одной из антенн приемного устройства; определяют текущие координаты космического аппарата по принимаемым сигналам навигационных спутников; по координатам навигационных спутников и координатам космического аппарата определяют единичные векторы направлений от космического аппарата на навигационные спутники; определяют углы между найденным средним направлениями на все навигационные спутники; выбирают спутник, для которого эти углы минимальны; выдают команду на прием сигнала выбранного навигационного спутника; ориентацию космического аппарата в гринвичской системе координат определяют в соответствии с определенной матрицей.
Наверх