Магнитотвердый изотропный сплав для гистерезисных двигателей и технология термической обработки

Изобретение относится к области металлургии и может быть использовано при изготовлении роторов гистерезисных двигателей из магнитотвердых порошковых сплавов. Порошковый изотропный магнитотвердый материал системы железо-хром-кобальт содержит: 22,5 мас. % хрома, 15 мас. % кобальта, 1 мас. % кремния, 2-4 мас. % молибдена или 1,5-2 мас. % молибдена и 1,5-2 мас. % вольфрама, остальное - железо. Прессование проводят в закрытой стальной пресс-форме при 600 МПа, спекают при 1350°С в вакууме 10-2 Па в течение 2 часов. После спекания проводят закалку и ступенчатое старение при температурах 620°С, 580°С, 560°С, 540°С, 520°C с выдержкой 15-45 мин при каждой температуре и охлаждением в воде после каждой выдержки. Обеспечивается повышение магнитных гистерезисных характеристик магнитотвердых сплавов и сокращение продолжительности термической обработки. 2 н.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии, и может быть использовано при изготовлении роторов гистерезисных двигателей (ГД) из магнитотвердых порошковых сплавов.

По литературным данным оптимальными сплавами считаются сплавы с химическим составом, близким к гребневому. При определенной термической обработке данные сплавы обладают упорядоченной структурой и высоким уровнем гистерезисных магнитных характеристик, которые обеспечивают требуемую работоспособность деталей.

Известен патент [Патент 2303644. Дисперсионно-твердеющий магнитотвердый сплав], в котором исследуемый магнитотвердый сплав легируют вольфрамом для достижения требуемого уровня гистерезисных и прочностных свойств. Недостатком данного изобретения является низкое значение коэрцитивной силы Нс=90-100 А/см и большая продолжительность процесса термической обработки материала.

Известен способ [Патент 2281339. Способ обработки магнитотвердых сплавов на основе системы железо-хром-кобальт], в котором магнитотвердый сплав 22Х15КСА дополнительно подвергают пластической деформации для получения высокого уровня магнитных свойств. К недостаткам способа можно отнести длительность изготовления материала с заданными свойствами, а также недостаточно высокое значение максимальной магнитной энергии (6,0-5,5 МГс*Э).

Наиболее близким по технической сущности к предлагаемому решению является материал и технология термообработки сплава 25X15КЮБ [Прецизионные сплавы. Справ, изд. под редакцией д.т.н., проф. Б.В. Молотилова. 2-е изд., переработ, и дополн. - М.: Металлургия, 1983. 439 с.], принятый за прототип (таблица 1). Исследуемый магнитотвердый сплав 25X15КЮБ в изотропном состоянии обладает следующими свойствами: 18<Нс<28 кА/м; 0,8<Вr<1,0 Тл; 7,0<(ВН)mах<8,0 кДж/м3. Недостатком данного материала является относительно невысокий комплекс магнитных свойств и длительный процесс изготовления, включающий деформацию, и продолжительное старение.

Технической задачей настоящего изобретения является сокращение продолжительности термической обработки и создание магнитов со свойствами в интервалах: 100<Нс<290 кА/м; 0,8<Вr<0,95 Тл; 9<(ВН)mах<12 кДж/м3, что соответствует требованиям конструкторской документации на активную часть ротора ГД по уровню магнитных гистерезисных характеристик. Превышение заданного уровня свойств, как и формирование низких магнитных свойств неприемлемо, так как приводит к перемагничиванию статора двигателя.

Поставленная задача решается выбором состава сплава 22,5X15КС легированного молибденом или молибденом и вольфрамом, в количествах, указанных в таблице 2, и подбором режимов термической обработки, обеспечивающей необходимый уровень свойств при относительно небольшой продолжительности процесса.

Сплавы получали методом порошковой металлургии: прессование заготовок в закрытых стальных пресс-формах при давлении 600 МПа, спекание при температуре 1350°С в вакууме 10-2 Па в течение 2 часов. В спеченном состоянии пористость образцов была не выше 2%. Далее магнитотвердые сплавы подвергали закалке и ступенчатому старению, таблица 3. Время выдержки при каждой ступени старения от 15 до 45 минут с охлаждением в воде после каждой выдержки. Введение легирующих компонентов (молибдена и вольфрама) позволило увеличить коэрцитивную силу, остаточную магнитную индукцию и максимальное значение магнитной энергии.

Дисперсность структуры, морфологию и количество фаз можно регулировать составом и термической обработкой - старением, что сказывается на магнитных свойствах сплавов. Авторами были исследованы сплавы, содержащие молибден в количестве 2-4% и молибден и вольфрам в количестве 1,5-2%. Установлено, что подобранное время выдержки и химический состав магнитотвердого материала обеспечивают требуемое значение свойств сплава 22,5X15К4МС (таблица 3). Магнитные свойства исследуемых образцов определяли на гистерезисографе Permagraph в диапазоне полей от -2500 кА/м до 2500 кА/м. Результаты измерений для каждого сплава после оптимального режима обработки приведены в таблице 3.

Новизна данного изобретения заключается в том, что подобраны способ производства, состав и технология термообработки, обеспечивающие высокие магнитные свойства за относительно короткий промежуток времени старения и изотропную структуру материала.

Существенное отличие заявляемого изобретения от прототипа заключается в том, что для получения необходимого уровня магнитных гистерезисных характеристик гребневых магнитотвердых сплавов (Fe-22,5%Cr-15%Co-1%Si-(2-4)%Мо и Fe-22,5%Cr-15%Co-1%Si-(l,5-2)%Mo-(1,5-2)%W) использовали методы порошковой металлургии (ПМ) и подобран оригинальный режим термической обработки.

Признаки изобретения, совпадающие с предлагаемым прототипом, - использование гребневого сплава с изотропной структурой в качестве материала для ГД.

Признаки заявляемого технического решения, отличительные от решения по прототипу, - оригинальный состав материала, полученного методом порошковой металлургии с оригинальными режимами термической обработки, формирующими комплекс свойств, необходимый для применения в качестве материала ротора ГД.

1. Способ изготовления порошкового изотропного магнитотвердого материала системы железо-хром-кобальт, включающий прессование, спекание и термообработку, отличающийся тем, что в материал дополнительно вводят 2-4 мас. % молибдена или 1,5-2 мас. % молибдена и 1,5-2 мас. % вольфрама, прессование проводят в закрытой стальной пресс-форме при 600 МПа, спекают при 1350°С в вакууме 10-2 Па в течение 2 часов, после чего проводят закалку и ступенчатое старение при температурах 620°С, 580°С, 560°С, 540°С, 520°C с выдержкой 15-45 мин при каждой температуре и охлаждением в воде после каждой выдержки.

2. Порошковый изотропный магнитотвердый материал системы железо-хром-кобальт, характеризующийся тем, что он получен способом по п. 1 и содержит: 22,5 мас. % хрома, 15 мас. % кобальта, 1 мас. % кремния, 2-4 мас. % молибдена или 1,5-2 мас. % молибдена и 1,5-2 мас. % вольфрама, остальное - железо.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к изготовлению высокоточных изделий. Заготовка для инструмента изготовлена из дисперсионно-упрочненного сплава Fe-Co-Mo/W-N, содержащего, мас.%: кобальт 15,0 до 30,0, молибден до 20,0, вольфрам до 25,0, при этом (Мо+W/2) 10,0 до 22,0, азот 0,005 до 0,12, железо и примеси - остальное.

Изобретение относится к области металлургии. Для улучшения механической обрабатываемости заготовки из мартенситной нержавеющей стали способ термической обработки заготовки включает этапы: 1) нагрев заготовки до температуры выше температуры аустенизации TAUS стали, охлаждение до достижения самой горячей частью заготовки температуры, которая меньше или равна максимальной температуре Tmax и больше или равна минимальной температуре Tmin, со скоростью охлаждения, предупреждающей превращение аустенита в феррито-перлитную структуру, 2) первый отжиг с охлаждением до достижения самой горячей частью заготовки температуры, которая меньше или равна Tmax и больше или равна Tmin, 3) второй отжиг с последующим охлаждением до температуры окружающей среды TA.

Изобретение относится к изготовлению листа. Для получения стального листа с мартенситной структурой, в которой средний размер реек меньше 1 микрометра, средний коэффициент удлинения реек составляет от 2 до 5, предел упругости - более 1300 МПа, предел прочности превышает (3220(C)+958) мегапаскалей, где (С) содержание углерода в мас.%, поставляют полуфабрикат из стали, содержащей, мас.%: 0,15≤С≤0,40; 1,5%≤Mn≤3%; 0,005≤Si≤2; 0,005≤Al≤0,1; 1,8≤Cr≤4; 0≤Mo≤2, при этом 2,7≤0,5(Mn)+(Cr)+3(Mo)≤5,7; S≤0,05; Р≤0,1, и необязательно: 0≤Nb≤0,050; 0,01≤Ti≤0,1; 0,0005≤В≤0,005; 0,0005≤Са≤0,005, остальное железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к составу низкохромистой инструментальной стали, предназначенной для работы при высоких температурах. Сталь содержит, мас.%: C 0,08-0,40, N 0,015-0,30, C+N 0,30-0,50, Cr 1-4, Mo 1,0-3, V 0,8-1,3, Mn 0,5-2, Si 0,1-0,5, факультативно Ni <3, Co ≤5, B <0,01, остальное - Fe и неизбежные примеси.

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов.

Изобретение относится к области металлургии. Для повышения механической прочности и обеспечения предела упругости более 1300 МПа полуфабрикат из стали содержит, мас.%: 0,15≤C≤0,40, 1,5≤Mn≤3, 0,005≤Si≤2, 0,005≤Al≤0,1, S≤0,05, P≤0,1, 0,025≤Nb≤0,1 и необязательно: 0,01≤Ti≤0,1, 0≤Сr≤4, 0≤Мо≤2, 0,0005≤В≤0,005, 0,0005≤Ca≤0,005, остальное железо и неизбежные примеси нагревают до температуры T1, составляющей от 1050° до 1250°C, затем производят черновую прокатку при температуре T2, составляющей от 1050° до 1150°C, с общим коэффициентом обжатия εa более 100% с получением листа с не полностью рекристаллизованной аустенитной структурой со средним размером зерна менее 40 микрометров.
Изобретение относится к области черной металлургии, а именно к технологии термической обработки полуфабрикатов из стали мартенситного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например контейнеров для перевозки отработавшего ядерного топлива.
Изобретение относится к металлургии, а именно к термической обработке высокопрочных коррозионно-стойких мартенситностареющих сталей криогенной техники, и может быть использовано в энергетическом машиностроении при изготовлении высоконагруженных упругих металлических уплотнений разъемных соединений энергетических установок, работающих в агрессивных средах при температурах от 20 до 723К.
Изобретение относится к области металлургии, а именно к способу термической обработки жаропрочных сталей мартенситного класса, применяемых для изготовления элементов тепловых энергетических установок с рабочей температурой пара до 650°C.
Изобретение относится к термической обработке стали, применяемой для изготовления сложнонагруженных деталей в судовом машиностроении, воспринимающих значительные разнонаправленные динамические нагрузки, например, крепежа, поковок.

Группа изобретений относится к изготовлению конструктивных элементов из дуплексной стали с аустенитной фазой в форме зерен, включенной в ферритную матрицу. Порошкообразный исходный материал, изготовленный из дуплексной стали и содержащий аустенитную и ферритную фазы и дополнительные легирующие элементы, слоями наносят на носитель, каждый отдельный слой подвергают воздействию лазерного пучка и отверждают с обеспечением постепенного формирования конструктивного элемента.

Группа изобретений относится к изготовлению спеченного магнита R-Fe-B. Магнит состоит из 12-17 ат.% R, 0,1-3 ат.% M1, 0,05-0,5 ат.% M2, от 4,8+2×m до 5,9+2×m ат.% B и остальное – Fe.

Изобретение относится к получению наноразмерного порошка феррита меди(II). Способ включает приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг.
Изобретение относится к области металлургии, а именно к получению монофазных интерметаллидных сплавов, и может быть использовано в атомной, энергетической, авиационной и аэрокосмической промышленности в качестве базовых композиционных материалов при производстве изделий и покрытий, работающих в области высоких температур, Способ получения монофазного интерметаллидного сплава на основе титана включает механоактивационную обработку смеси порошков алюминия и титана, уплотнение, нагрев смеси порошков алюминия и титана высокочастотным электромагнитным полем и выдержку при этой температуре в течение времени, соответствующего образованию интерметаллидного сплава заданного состава.

Изобретение относится к изготовлению постоянных магнитов на основе сплавов Nd-Fe-B. Способ включает прессование заготовок, их механическую обработку, нанесение на поверхность слоя алюминия толщиной 10-15 мкм холодным газодинамическим напылением и термообработку в расплаве солей с последующим охлаждением.
Изобретение относится к изготовлению компонента газотурбинного двигателя из металлического порошка. Способ включает аддитивное изготовление компонента и его термическую обработку.
Изобретение относится к изготовлению детали из порошка титанового сплава. Способ включает изготовление спеченной преформы, имеющей плотность 80-95% от теоретически максимальной плотности, отделение от спеченной преформы части, имеющей объем, превышающий объем детали, и форму, отличающуюся от близкой к заданной форме детали, термоциклирование упомянутой части спеченной преформы при ее сверхпластической деформации, обеспечение фазового превращения сплава между двумя твердыми фазами α и β с получением детали, имеющей форму, близкую к заданной форме, и плотность, составляющую 99-100% от теоретически максимальной плотности, и обработку детали с получением окончательно заданной формы детали.

Изобретение относится к области машиностроения и предназначено для использования в узлах трения без дополнительной смазки и при высоких температурах. Способ изготовления гибкой ленты тонколистового антифрикционного материала для узла трения без дополнительной смазки включает проведение укладки металлической сетки в виде гибкой металлической ленты в пресс-форму по фторопластовой прокладке, размещение в каждой ячейке металлической сетки по стальному шарику, нанесение слоя фторопласта-4 по поверхности уложенных шариков и разравнивание его.

Изобретение относится к области металлургии и может применяться для горячего цинкования металлических изделий, а именно к таблеткам для легирования расплава цинка в процессе горячего цинкования.

Изобретение относится к получению изделий из твердого сплава на основе карбида вольфрама. Способ включает спекание порошка в печи при температуре в диапазоне от 1360 до 1550°C с получением изделия и его охлаждение.

Изобретение относится к области металлургии и может быть использовано при изготовлении роторов гистерезисных двигателей из магнитотвердых порошковых сплавов. Порошковый изотропный магнитотвердый материал системы железо-хром-кобальт содержит: 22,5 мас. хрома, 15 мас. кобальта, 1 мас. кремния, 2-4 мас. молибдена или 1,5-2 мас. молибдена и 1,5-2 мас. вольфрама, остальное - железо. Прессование проводят в закрытой стальной пресс-форме при 600 МПа, спекают при 1350°С в вакууме 10-2 Па в течение 2 часов. После спекания проводят закалку и ступенчатое старение при температурах 620°С, 580°С, 560°С, 540°С, 520°C с выдержкой 15-45 мин при каждой температуре и охлаждением в воде после каждой выдержки. Обеспечивается повышение магнитных гистерезисных характеристик магнитотвердых сплавов и сокращение продолжительности термической обработки. 2 н.п. ф-лы, 3 табл.

Наверх