Компрессорная установка



Владельцы патента RU 2707989:

Федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" (RU)

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, жидкостный насос и эжектор. Сопло эжектора гидравлически связано с жидкостным насосом. Вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости гидравлически связан с входным каналом турбогенератора, выходной канал которого сообщается через регулируемую задвижку с источником рабочей жидкости, к которому подключен вход жидкостного насоса. Достигаемый технический результат заключается в обеспечении поддержания стабильной нагрузки на жидкостный насос при переменном расходе на выходе по жидкости газожидкостного сепаратора и выработке энергии за счет исключения переходных процессов работы жидкостного насоса. 1 ил.

 

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Известна компрессорная установка, содержащая рабочую камеру, сообщающуюся с жидкостным насосом, эжектор, перепускное распределительное устройство, всасывающий газовый клапан, который отделяет полость рабочей камеры и газопровода высокого давления от газопровода низкого давления (RU 2154749, 2000 г.).

Недостатком указанного устройства является низкая энергетическая эффективность рабочего процесса при сжатии газа, поскольку при заполнении газом рабочей камеры мощность жидкостного насоса и приводного двигателя значительно ниже, чем при вытеснении газа в газопровод высокого давления, что сопровождается неравномерной загрузкой двигателя. Указанное обстоятельство негативно отражается на эффективности самого рабочего процесса при сжатии и перекачке газа. Кроме того, из-за неравномерной загрузки установленная мощность двигателя к насосу должна быть увеличена.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является компрессорная установка, содержащая рабочую камеру, выполненную в виде газо-жидкостного сепаратора, жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано с реверсивным жидкостным насосом, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газо-жидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к источнику рабочей жидкости (RU 2680021,2019 г.).

Недостатком указанного устройства является относительно узкий рабочий диапазон давления газа на входе в компрессорную установку. Поскольку давление газа должно быть меньше, чем давление в источнике рабочей жидкости, и сам источник рабочей жидкости должен подбираться с учетом данного требования. Кроме того, циклические переключения реверсивного жидкостного насоса сопровождаются снижением энергетической эффективности компрессорной установки в целом, из-за наличия переходных процессов при смене режима работы жидкостного насоса.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является расширение рабочего диапазона давления газа на входе в компрессорную установку и повышение ее энергетической эффективности.

Указанная проблема решается тем, что компрессорная установка, содержит рабочую камеру, выполненную в виде газо-жидкостного сепаратора, жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано с жидкостным насосом, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газо-жидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости гидравлически связан с входным каналом турбогенератора, выходной канал которого сообщается через регулируемую задвижку с источником рабочей жидкости, к которому подключен вход жидкостного насоса.

Достигаемый технический результат заключается в обеспечении поддержания стабильной нагрузки на жидкостной насос при переменном расходе на выходе по жидкости газо-жидкостного сепаратора и выработке энергии за счет исключения переходных процессов работы жидкостного насоса.

Сущность изобретения поясняется фиг. 1, на которой представлена схема заявляемой компрессорной установки.

Компрессорная установка содержит рабочую камеру 1 и эжектор с камерой смешения 2, подключенные к жидкостному насосу 3, перепускной трубопровод 4, всасывающий газовый клапан 5 и нагнетательный газовый клапан 6, которые отделяют полость рабочей камеры 1 от газопровода низкого давления 7 и газопровода высокого давления 8, соответственно. Рабочая камера 1 выполнена в виде газо-жидкостного сепаратора. Камера смешения 2 эжектора сообщается с жидкостным насосом 3 через сопло 9 эжектора. Вход жидкостного насоса 3 гидравлически связан с источником рабочей жидкости 10. Жидкостной насос 3 может быть подключен к электроприводу 11. Вход в камеру смешения 2 эжектора связан через всасывающий газовый клапан 5 с газопроводом низкого давления 7. Перепускной трубопровод 4 связывает выход камеры смешения 2 эжектора с верхней частью газо-жидкостного сепаратора 1. В верхней части газо-жидкостного сепаратора 1 размещен нагнетательный газовый клапан 6, отделяющий газо-жидкостной сепаратор 1 от газопровода высокого давления 8.

В нижней части газожидкостный сепаратор 1 гидравлически связан с входным каналом 12 турбогенератора 13, а его выходной канал 14 сообщается с источником рабочей жидкости 10 через регулируемую задвижку 15.

В качестве источника рабочей жидкости 10 может быть использован трубопровод, через который постоянно циркулирует рабочая жидкость, как показано на фиг. 1. Верхняя часть газо-жидкостного сепаратора 1 заполнена газом, нижняя часть газожидкостного сепаратора 1 заполнена рабочей жидкостью, на фиг. 1 показана граница раздела 16 между газообразной фазой и жидкой фазой.

Компрессорная установка работает следующим образом.

Жидкостной насос 3 подает рабочую жидкость в сопло 9 эжектора. За счет энергии струи жидкости на входе камеры смешения 2 эжектора понижается давление и в камеру смешения 2 поступает газ из газопровода низкого давления 7 через открытый всасывающий газовый клапан 5. На выходе камеры смешения 2 эжектора повышается давление в потоке смеси жидкости и газа за счет преобразования кинетической энергии жидкости в потенциальную энергию, что сопровождается повышением давления при понижении скорости течения газожидкостного потока. Через перепускной трубопровод 4 сжатый газ вместе с жидкостью поступает в рабочую камеру 1, где реализуется процесс сепарации с разделением газожидкостной смеси на жидкую и газовую фазу. Жидкость скапливается в нижней части рабочей камеры 1, а газ в верхней части, как в известных гравитационных сепараторах. Сжатый газ накапливается в верхней части рабочей камеры 1, что приводит к смещению границы раздела 16 в направлении сверху вниз. При этом жидкость из рабочей камеры 1 вытесняется и поступает во входной канал 12 турбогенератора 13. Турбогенератор 13 обеспечивает преобразование гидравлической энергии потока жидкости в электрическую энергию, которая далее передается потребителю. После прохода через турбогенератор 13 жидкость поступает в его выходной канал 14, и далее через открытую регулируемую задвижку 15 направляется в трубопровод 10. Таким образом, обеспечивается выработка энергии за счет рационального использования гидравлической энергии потока жидкости при заполнении рабочей камеры 1 газом.

Когда граница раздела 16 приблизится к нижнему концу рабочей камеры 1, поступит управляющий сигнал на закрытие регулируемой задвижки 15. При этом сжатый газ вместе с жидкостью продолжает поступать в рабочую камеру 1 через перепускной трубопровод 4, где продолжается процесс сепарации с разделением газожидкостной смеси на жидкую и газовую фазу. Жидкость скапливается в нижней части рабочей камеры 1, а газ в верхней части. Поскольку запорно-регулирующее устройство 15 закрыто, а жидкость поступает в рабочую камеру 1, будет происходить смещение границы раздела 16 в направлении снизу верх. Это приведет к увеличению давления газа в рабочей камере 1. При нарастании давления закроется всасывающий газовый клапан 5, при этом жидкость продолжит поступать в рабочую камеру 1 через перепускной трубопровод 4. При дальнейшем смещении границы раздела 16 вверх наступит момент, когда давление в рабочей камере 1 сравняется с давлением в газопроводе высокого давления 8. Такое выравнивание давления приведет к открытию нагнетательного газового клапана 6. При дальнейшем смещении границы раздела 16 вверх сжатый газ из рабочей камеры 1 вытесняется в газопровод высокого давления 8 через открытый нагнетательный газовый клапан 6. После завершения цикла вытеснения газа поступит сигнал на регулируемую задвижку 15 для ее открытия. Цикл повторяется.

При использовании заявляемого изобретения давление газа может быть меньше, чем давление в источнике рабочей жидкости, но может быть и больше, чем давление в источнике рабочей жидкости. Обеспечивается более широкий рабочий диапазон для давления газа на входе в компрессорную установку.

Преимуществом заявляемого устройства является повышение энергетической эффективности рабочего процесса компрессорной установки, поскольку при заполнении газом рабочей камеры 1 рационально используется энергия потока жидкости за счет установки турбогенератора 13, что сопровождается выработкой электрической энергии. Кроме того, за счет использования эжекторного процесса при сжатии и вытеснении газа из рабочей камеры 1 обеспечивается расширение области работы эжектора 2. При этом обеспечивается снижение колебаний мощности жидкостного насоса 3 и приводного двигателя электропривода 11, что конечном итоге сопровождается более равномерной загрузкой электродвигателя на протяжении всего рабочего цикла и позитивно отражается на эффективности самого рабочего процесса при сжатии и перекачке газа.

Таким образом, предлагаемое изобретение обеспечивает расширение рабочего диапазона давления газа на входе в компрессорную установку с одновременным повышением ее энергетической эффективности.

Компрессорная установка, характеризующаяся тем, что она содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, жидкостный насос и эжектор, при этом сопло эжектора гидравлически связано с жидкостным насосом, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости гидравлически связан с входным каналом турбогенератора, выходной канал которого сообщается через регулируемую задвижку с источником рабочей жидкости, к которому подключен вход жидкостного насоса.



 

Похожие патенты:

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор.

Изобретение относится к области насосостроения, касается электрогидравлических насосов и может найти применение в различных отраслях народного хозяйства для перекачки разного рода жидкостей.

Группа изобретений относится к области наддува двигателя внутреннего сгорания. Техническим результатом является повышение надежности и КПД.

Предложены способ и устройство для регулирования давления наддува в двигателе (39) внутреннего сгорания с нагнетателем (1) системы волнового наддува, при котором нагнетатель (1) системы волнового наддува имеет ячеистый ротор (8), проходящий за один оборот по меньшей мере два цикла компрессии, причем поток (4с) отходящих газов высокого давления разделяют на первый и второй частичные потоки (4d, 4е) отходящих газов высокого давления, причем в первом цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также первый частичный поток (4d) отходящих газов высокого давления и отводят от ячеистого ротора (8) первый поток (3с) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления, а во втором цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также второй частичный поток (4е) отходящих газов высокого давления и отводят от ячеистого ротора (8) второй поток (3d) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления, причем первый и второй потоки (3с, 3d) сжатого свежего воздуха сводят вместе в поток наддувочного воздуха (3е), и наддувочный воздух (3е) подводят к двигателю (39) внутреннего сгорания, причем второй частичный поток (4е) отходящих газов высокого давления подвергают регулированию, чтобы таким образом управлять давлением наддувочного воздуха (3е), причем до соединения первого и второго потоков (3с, 3d) сжатого свежего воздуха в поток наддувочного воздуха (3е) второй поток (3d) сжатого свежего воздуха проводят через обратный клапан (9).

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Установка содержит рабочие камеры высокого и низкого давления, выполненные в виде частично заполненных жидкостью подземных вертикальных емкостей с устьевыми головками.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Нагнетатель (1) системы волнового наддува для сжатия свежего воздуха (2а) для двигателя внутреннего сгорания, включающий в себя камеру (6) холодного газа, камеру (7) горячего газа, а также расположенную между ними камеру (11) ротора, причем внутри камеры (11) ротора расположен выполненный с возможностью вращения ячеистый ротор (8), камера (7) горячего газа включает в себя канал (4) отходящих газов высокого давления и канал (5) отходящих газов низкого давления, камера (6) холодного газа включает в себя канал (2) свежего воздуха и канал (3) наддувочного воздуха, канал (4) отходящих газов высокого давления, канал (5) отходящих газов низкого давления, канал (2) свежего воздуха и канал (3) наддувочного воздуха соединены с ячеистым ротором (8) по текучей среде, причем камера (6) холодного газа включает в себя подшипник (14) ячеистого ротора, причем ячеистый ротор (8) соединен с валом (12) ротора, причем вал (12) ротора опирается на подшипник (14) ячеистого ротора, причем ячеистый ротор (8) разделен в направлении прохождения вала (12) ротора и включает в себя по меньшей мере одну первую часть (8а) ячеистого ротора и одну вторую часть (8b) ячеистого ротора.

Группа изобретений относится к области насосостроения и может быть использована для подъема грунтовых вод в пустынях, охлаждаемых химических реакторах, в системах охлаждения космических аппаратов, системах кондиционирования, в системах капельного орошения, при разработке высокоточный капельных дозаторов.

Группа изобретений относится к устройству и способу удаления жидкости из эксплуатационной скважины. Устройство содержит резервуар (104, 105), имеющий зону (109) накопления жидкости, при этом указанный резервуар выполнен с возможностью соединения с трубой (102) удаления газа, расположенной в эксплуатационной скважине; изолятор (106), выполненный с возможностью ограничения потока текучей среды между стенкой (104) резервуара и стенкой (101) скважины из первого пространства (107), образованного между изолятором и забоем скважины, во второе пространство (108), образованное между изолятором и устьем скважины; первое отверстие (117а), выполненное в указанном резервуаре с возможностью обеспечения циркуляции смеси газ-жидкость из указанного первого пространства в третье пространство (110), образованное в трубе удаления газа; и второе отверстие (116а) в указанном резервуаре, выполненное с возможностью обеспечения циркуляции текучей среды из указанного второго пространства в зону накопления жидкости.

Группа изобретений относится к области нефтегазовой промышленности. Вращающийся изобарический обменник давления включает цилиндрический ротор с первой и второй противоположными торцевыми сторонами, имеющими осевые каналы с отверстиями, расположенными в торцевых сторонах.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Установка содержит рабочие камеры высокого и низкого давления, выполненные в виде частично заполненных жидкостью подземных вертикальных емкостей с устьевыми головками.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Группа изобретений относится к модульным насосным агрегатам и может применяться для перекачки больших объемов жидкости, используя при этом по крайней мере один насосный модуль.

Изобретение относится к области систем водоснабжения и водоотведения. Способ состоит в том, что осуществляют разделение насосной станции на конечное число Н элементов.

Изобретение относится к области водоснабжения. Насосная станция содержит насосное устройство (1), гидроаккумулятор (2), представляющий собой стальной бак с резиновой упругой мембраной, блок автоматики (5), содержащий устройство (6) управления и защиты насоса, и стабилизатор (7) давления воды, соединенные между собой трубопроводами (8).

Изобретение относится к устройствам для добычи высоковязкой нефти из буровых скважин. .

Изобретение относится к области насосостроения и, в частности, может быть использовано для нагнетания газожидкостной смеси при бурении и освоении нефтяных и газовых скважин и при закачке в пласт газов и газожидкостной смеси.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, жидкостный насос и эжектор. Сопло эжектора гидравлически связано с жидкостным насосом. Вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости гидравлически связан с входным каналом турбогенератора, выходной канал которого сообщается через регулируемую задвижку с источником рабочей жидкости, к которому подключен вход жидкостного насоса. Достигаемый технический результат заключается в обеспечении поддержания стабильной нагрузки на жидкостный насос при переменном расходе на выходе по жидкости газожидкостного сепаратора и выработке энергии за счет исключения переходных процессов работы жидкостного насоса. 1 ил.

Наверх