Высоковольтный преобразователь уровня напряжения

Изобретение относится к вычислительной технике. Технический результат заключается в повышении быстродействия Цифровой КМОП схемы сдвига. Технический результат достигается за счёт схемы Высоковольтного преобразователя уровня напряжения, которая содержит: семь полевых транзисторов Р-типа (1-7) и семь транзисторов N-типа (8-14), вход сигнала IN, входы источников опорного напряжения VDD и VDD, инверсный выход , выводы питания высокого уровня напряжения VCC и VDD и низкого уровня напряжения VSS. 1 ил.

 

Предлагаемое изобретение относится к цифровой вычислительной технике и может быть использовано при согласовании схем, имеющих различные уровни напряжений источников питания и(или) внутренних сигналов.

Известна Цифровая КМОП схема сдвига [1]. Это устройство предназначено для преобразования уровня напряжения входного сигнала с низкой амплитудой в выходной сигнал с уровнем напряжения высокой амплитуды (например, при сопряжении ТТЛ- и КМДП логических элементов).

Недостатком указанной выше схемы является низкое быстродействие. Низкое быстродействие схемы вызвано задержкой появления напряжения низкого уровня на затворах транзисторов защелки Р-типа, образующих обратную связь. Эта задержка вызвана разрядом узловых емкостей стоков и истоков транзисторов N- и Р-типа последовательно включенных между источником напряжения низкого уровня VSS и затворами транзисторов защелки Р-типа.

Задачей предлагаемого изобретения является повышение быстродействия Цифровой КМОП схемы сдвига.

Поставленная задача достигается тем, что в Цифровой КМОП схеме сдвига, содержащей полевые транзисторы Р-типа с первого по седьмой и N-типа с восьмого по четырнадцатый, вход сигнала IN, соединенный с затворами первого, восьмого и четырнадцатого транзисторов, вывод питания высокого уровня напряжения VCC, соединенный с истоком и подложкой первого транзистора, вывод питания высокого уровня напряжения VDD, соединенный, с истоками и подложками второго и третьего транзисторов, вывод питания низкого уровня напряжения VSS, соединенный с истоками восьмого, тринадцатого и четырнадцатого транзисторов и подложками транзисторов с восьмого по четырнадцатый, инверсный выход , соединенный со стоками седьмого и десятого транзисторов, вход источника опорного напряжения VDD, соединенный с затворами четвертого, пятого, девятого и десятого транзисторов, вход источника опорного напряжения VDD, соединенный с затворами шестого, седьмого, одиннадцатого и двенадцатого транзисторов, причем стоки первого и восьмого транзисторов соединены с затвором тринадцатого, сток второго транзистора соединен с истоком и подложкой четвертого, сток которого соединен с истоком и подложкой шестого, сток шестого транзистора - со стоком девятого, а сток третьего транзистора соединен с истоком и подложкой пятого, сток которого соединен с истоком и подложкой седьмого, исток девятого транзистора соединен со стоком одиннадцатого, исток которого соединен со стоком тринадцатого, а исток десятого - со стоком двенадцатого, исток которого соединен со стоком четырнадцатого, затвор второго транзистора соединен со стоком пятого и истоком и подложкой седьмого транзисторов, а затвор третьего транзистора - со стоком четвертого и истоком и подложкой шестого транзисторов.

Таким образом, в предлагаемой схеме Высоковольтного преобразователя уровня напряжения, вследствие отличий от известного устройства, описанных выше, из цепочек последовательно соединенных транзисторов N- и Р-типа, включенных между источником напряжения низкого уровня VSS и затворами второго и третьего транзисторов Р-типа защелки, исключены транзисторы Р-типа - четвертый и пятый. Поэтому последовательные цепочки узловых емкостей по сравнению с Цифровой КМОП схемой сдвига, укорочены, и, следовательно, суммарное время разряда этих узловых емкостей уменьшено. Таким образом, напряжение низкого уровня поступает на затворы второго и третьего транзисторов быстрее, тем самым увеличивая быстродействие всей схемы Высоковольтного преобразователя уровня напряжения.

На Рисунке приведена схема предлагаемого Высоковольтного преобразователя уровня напряжения.

Предлагаемый Высоковольтный преобразователь уровня напряжения, содержит полевые транзисторы Р-типа с первого по седьмой (1-7) и N-типа - с восьмого по четырнадцатый (8-14), вход сигнала IN, соединенный с затворами транзисторов первого (1), восьмого (8) и четырнадцатого (14), вывод питания высокого уровня напряжения VCC, соединенный с истоком и подложкой первого транзистора (1), вывод питания высокого уровня напряжения VDD, соединенный, с истоками и подложками транзисторов второго (2) и третьего (3), вывод питания низкого уровня напряжения VSS, соединенный с истоками транзисторов восьмого (8), тринадцатого (13) и четырнадцатого (14) и подложками транзисторов с восьмого по четырнадцатый (8-14), инверсный выход , соединенный со стоками транзисторов седьмого (7) и десятого (10), вход источника опорного напряжения VDD, соединенный с затворами транзисторов четвертого (4), пятого (5), девятого (9) и десятого (10), вход источника опорного напряжения VDD, соединенный с затворами транзисторов шестого (6), седьмого (7), одиннадцатого (11) и двенадцатого (12). Причем стоки транзисторов первого (1) и восьмого (8) соединены с затвором тринадцатого (13), сток второго (2) транзистора соединен с истоком и подложкой четвертого (4), сток которого соединен с истоком и подложкой шестого (6), сток шестого (6) транзистора - со стоком девятого (9), а сток третьего транзистора (3) соединен с истоком и подложкой пятого (5), сток которого соединен с истоком и подложкой седьмого (7), исток девятого (9) транзистора соединен со стоком одиннадцатого (11), исток которого соединен со стоком тринадцатого (13), а исток десятого (10) - со стоком двенадцатого (12), исток которого соединен со стоком четырнадцатого (14), затвор второго (2) транзистора соединен со стоком пятого (5) транзистора и истоком и подложкой седьмого (7), а затвор третьего (3) транзистора - со стоком четвертого (4) транзистора и истоком и подложкой шестого (6).

Предлагаемый Высоковольтный преобразователь уровня напряжения представляет собой цифровое логическое устройство, предназначенное для преобразования входного сигнала с амплитудой от напряжения низкого уровня VSS («0») до напряжения логической единицы «1*» (VCC), в выходной сигнал с амплитудой от напряжения низкого уровня VSS («0») до напряжения логической «1», соответствующее напряжению питания высокого уровня напряжения VDD и работает следующим образом.

Исходное состояние. На вывод питания VSS и на вход IN подано напряжение низкого уровня, соответствующее напряжению логического «О», на вывод первого источника питания высокого уровня напряжения VCC - высокое напряжение, соответствующее для входного инвертора, выполненного на полевых транзисторах 1 и 8, напряжению логической «1*» и на вывод второго источника питания высокого уровня напряжения VDD - высокое напряжение, соответствующее выходному напряжению логической «1» Высоковольтного преобразователя уровня напряжения. Кроме того, на входе источника опорного напряжения VDD установлено напряжение, соответствующее двум третям напряжения высокого уровня VDD, а на входе VDD - напряжение, соответствующее одной трети напряжения высокого уровня VDD, вследствие чего транзисторы и N- и Р-типа, на затворы которых поступают эти опорные напряжения - всегда открыты. Так как вход IN соединен с затворами транзисторов Р-типа 1 и N-типа 8 и 14, а на нем установлено напряжение низкого уровня VSS («О»), то транзистор Р-типа 1 открыт, а транзисторы N-типа 8 и 14 - закрыты. Поэтому, через открытый транзистор 1 на затвор транзистора 13 поступает напряжение высокого уровня VCC («1*»), вследствие чего транзистор N-типа 13 - открыт.Так как на затворы транзисторов N-типа 11 и 12 и Р-типа 6 и 7 поступает напряжение высокого уровня VDD, а на затворы транзисторов N-типа 9 и 10 и Р-типа 4 и 5 - напряжение высокого уровня VDD, то транзисторы 4-7 и 9-12 - открыты. Кроме того, в результате действия предыдущего регенеративного цикла транзистор Р-типа 2 закрыт, а транзистор Р-типа 3 - открыт. Поэтому через открытые транзисторы 3, 5 и 7 на инверсном выходе Высоковольтного преобразователя уровня напряжения установлено напряжение высокого уровня VDD («1»).

В режиме преобразования высокого напряжения логической единицы «1*» (VCC) в напряжение низкого уровня VSS («0»), на вход IN, и следовательно, на затворы транзисторов Р-типа 1 и N-типа 8 и 14, поступает напряжение логической единицы «1*» (VCC). Поэтому транзистор 1 закрывается, а транзисторы 8 и 14 открываются и через них на затвор транзистора 13 и на исток транзистора N-типа 12 поступает напряжение низкого уровня VSS («О»), в результате чего транзистор N-типа 13 закрывается, а через открытые транзисторы N-типа 12 и 10 напряжение низкого уровня VSS («0») поступает на инверсный выход Высоковольтного преобразователя уровня напряжения. Кроме того, через открытый транзистор Р-типа 7 на затвор транзистора 2 поступает низкое напряжение, достаточное для того, чтобы транзистор 2 полностью открылся. Поэтому через открытые транзисторы Р-типа 2 и 4 на затвор транзистора Р-типа 3 поступает напряжение высокого уровня VDD («1»), в результате чего транзистор 3 закрывается, а защелка устанавливается в режим хранения.

При переходе Высоковольтного преобразователя уровня напряжения в исходное состояние и режим формирования на инверсном выходе напряжения высокого уровня VDD («1»), на вход IN, и, следовательно, на затворы транзисторов Р-типа 1 и N-типа 8 и 14, поступает напряжение низкого уровня VSS («0»). Поэтому транзистор 1 открывается, а транзисторы 8 и 14 закрываются. Через открытый транзистор 1 на затвор транзистора 13 поступает напряжение высокого уровня VCC («1*»), вследствие чего он открывается и через него на исток транзистора 11 поступает напряжение низкого уровня VSS («0»). Так как транзисторы N-типа 11 и 9 и Р-типа 6 открыты, то на затвор транзистора Р-типа 3 поступает напряжение низкого уровня, достаточное для того, чтобы транзистор 3 полностью открылся. Поэтому через открытые транзисторы Р-типа 3 и 5 на затвор транзистора Р-типа 2 поступает напряжение высокого уровня VDD («1»), в результате чего транзистор 2 закрывается, а защелка устанавливается в режим хранения. Кроме того, так как транзистор Р-типа 7 также открыт, то через него напряжение высокого уровня VDD («1») поступает на инверсный выход и схема Высоковольтного преобразователя уровня напряжения переходит в исходное состояние.

Таким образом, в предлагаемой схеме Высоковольтного преобразователя уровня напряжения, в отличие от Цифровой КМОП схемы сдвига в цепочках последовательно соединенных транзисторов N- и Р-типа, включенных между источником напряжения низкого уровня VSS и затворами транзисторов защелки Р-типа 2 и 3, количество транзисторов Р-типа - уменьшено. А именно, транзисторы Р-типа 4 и 5 - исключены. Поэтому последовательные цепочки узловых емкостей по сравнению с Цифровой КМОП схемой сдвига, укорочены, и, следовательно, суммарное время разряда этих узловых емкостей уменьшено. Так как, напряжение низкого уровня поступает на затворы транзисторов 2 и 3 быстрее, то быстродействие всей схемы Высоковольтного преобразователя уровня напряжения увеличивается.

Литература

1. CMOS Digital Level Shift Circuit: Patent № US 6099100 A / Won Kee Lee; assignee LG Semicon Co Ltd. - 8.08.2008.

Высоковольтный преобразователь уровня напряжения, содержащий полевые транзисторы Р-типа - с первого по седьмой и N-типа - с восьмого по четырнадцатый, вход сигнала IN, соединенный с затворами первого, восьмого и четырнадцатого транзисторов, вывод питания высокого уровня напряжения VCC, соединенный с истоком и подложкой первого транзистора, вывод питания высокого уровня напряжения VDD, соединенный с истоками и подложками второго и третьего транзисторов, вывод питания низкого уровня напряжения VSS, соединенный с истоками восьмого, тринадцатого и четырнадцатого транзисторов и подложками транзисторов с восьмого по четырнадцатый, инверсный выход, соединенный со стоками седьмого и десятого транзисторов, вход источника опорного напряженияVDD, соединенный с затворами четвертого, пятого, девятого и десятого транзисторов, вход источника опорного напряженияVDD, соединенный с затворами шестого, седьмого, одиннадцатого и двенадцатого транзисторов, причем стоки первого и восьмого транзисторов соединены с затвором тринадцатого, сток второго транзистора соединен с истоком и подложкой четвертого, сток которого соединен с истоком и подложкой шестого, сток шестого транзистора - со стоком девятого, а сток третьего транзистора соединен с истоком и подложкой пятого, сток которого соединен с истоком и подложкой седьмого, исток девятого транзистора соединен со стоком одиннадцатого, исток которого соединен со стоком тринадцатого, а исток десятого - со стоком двенадцатого, исток которого соединен со стоком четырнадцатого, отличающийся тем, что затвор второго транзистора соединен со стоком пятого и истоком и подложкой седьмого транзисторов, а затвор третьего транзистора - со стоком четвертого и истоком и подложкой шестого транзисторов.



 

Похожие патенты:

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Технический результат: повышение нагрузочной способности триггерного логического элемента НЕ на полевых транзисторах.

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении помехоустойчивости логического элемента при воздействии одиночных ядерных частиц.

Изобретение относится к области микроэлектроники. Техническим результатом изобретения является создание симметричного мультиплексора на комплементарных металл-окисел-полупроводник (КМОП) транзисторах, имеющего два сигнальных входа, один вход управления, один выход и выполненного в виде элемента библиотеки стандартных цифровых элементов (СЦЭ), с более высоким качеством коммутации сигналов, за счет более высокой степени идентичности задержек распространения сигналов от сигнальных входов до выхода, вследствие симметрии топологических слоев, которая обеспечивает идентичность паразитных емкостей и сопротивлений и их нахождение в одинаковых электрических режимах; вследствие установки на управляющем входе мультиплексора дополнительных буферных каскадов, с целью обеспечения независимости задержек распространения сигналов от параметров драйвера управляющего входа; а также вследствие увеличения размеров транзисторов, с целью уменьшения влияния локальных внутрикристальных вариаций на идентичность задержек распространения сигналов.

Использование: для создания сверхбольшой логической матрицы с энергонезависимой памятью и высокой степенью интеграции элементов. Сущность изобретения заключается в том, что многослойная логическая матрица на основе мемристорной коммутационной ячейки, представляющая собой электронное интегральное устройство на основе логических элементов ИЛИ-НЕ, в котором архитектура электрических цепей является трехмерной, а само устройство образовано перпендикулярно ориентированными пластами, коммутируемыми через мемристивные кроссбары, и состоит из ячеек с последовательно формируемыми слоями: монокристаллического кремния со сквозными проводниками по технологии монолитной 3D интеграции; слоем планарных КМОП инверторов, каждый из которых образован двумя комплементарными полевыми транзисторами с объединенными затворами - входом инвертора, объединенными стоками - выходом инвертора и подключенными к соответствующим шинам питания истокам; слоем сигнальных проводников; мемристивным слоем; слоем с диодами Зенера, причем соединенные последовательно с диодами Зенера мемристоры находятся в перекрестиях выходов КМОП инверторов и сигнальных проводников нижележащего пласта.

Изобретение относится к вычислительной технике и может быть использовано для построения быстродействующих преобразователей уровня напряжения, в том числе при сопряжении элементов электронных систем с несколькими источниками питания.

Изобретение относится к области вычислительной техники и может быть использовано при согласовании схем, имеющих различные уровни напряжений источников питания и внутренних сигналов.

Изобретение относится к области технологий для жидкокристаллических дисплеев. Технический результат заключается в обеспечении использования одного типа устройств тонкопленочных транзисторов за счет использования схемы возбуждения сканирования для оксидного полупроводникового тонкопленочного транзистора.

Изобретение относится к вычислительной технике и может быть использовано для построения быстродействующих преобразователей уровня напряжения, в том числе при сопряжении элементов электронных систем с несколькими источниками питания.

Изобретение относится к вычислительной технике и может быть использовано для реализации цифровых схем высокой надежности. Технический результат заключается в повышении надежности элемента при отказах транзистора за счет обеспечения сохранения вида реализуемой логической функции при однократных константных отказах входов элемента или транзисторов.

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах при реализации логических устройств. Технический результат - повышение быстродействия устройства.
Наверх