Струйный датчик давления

Изобретение относится к области контрольно-измерительной техники. Заявленный струйный датчик давления содержит чувствительный элемент, реагирующий на изменение давления, и измерительную схему, при этом чувствительный элемент выполнен в виде пластины, подвешенной на газовой опоре, а измерительная схема представляет собой измерительную компенсационную схему, включающую считывающий элемент в виде узла типа «сопло-заслонка», охваченный двумя соплами, расположенными до и после пневматического мембранного усилителя мощности, и образующий вместе с указанным усилителем и соплом обратной связи регенеративную обратную связь с коэффициентом усиления, большим единицы. Технический результат заключается в повышении быстродействия и в обеспечении стабильных показаний измерений в автоматическом режиме работы при динамических процессах. 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области контрольно-измерительной техники.

Уровень техники

Из уровня техники [патент RU 2344389 С1, опубликован 20.01.2009] известен тонкопленочный датчик давления, содержащий чувствительный элемент и измерительную схему. Работа данного датчика основана на определении измеряемого давления, исходя из силового воздействия газа на чувствительный элемент - мембрану тензорезистора. Измерительная схема обеспечивает стабильность выходных значений благодаря использованию мостовой схемы, в которую помещен чувствительный элемент.

Недостатком известного устройства является отсутствие возможности автоматизации процесса измерений, вызванный применением инерционной измерительной схемы.

Раскрытие сущности изобретения

Настоящее изобретение направлено на решение технической задачи по устранению вышеуказанного недостатка известного технического решения.

Технический результат, который достигается в настоящем изобретении, заключается в повышении быстродействия за счет использования в датчике пластины, на которую воздействует струя газа от источника давления, и измерительной компенсационной схемы с подключенным в обратной связи пневматическим мембранным усилителем мощности.

Более конкретно, технический результат достигается струйным датчиком давления, содержащим чувствительный элемент, реагирующий на изменение давления и выполненный в виде пластины, подвешенной на газовой опоре, и измерительную компенсационную схему, включающую считывающий элемент в виде узла типа «сопло-заслонка», охваченный двумя соплами, расположенными до и после пневматического мембранного усилителя мощности, и образующий вместе с указанным усилителем и соплом обратной связи регенеративную обратную связь с коэффициентом усиления большим единицы.

Краткое описание чертежа

На фиг.1 представлена схема предлагаемого струйного датчика давления.

Осуществление изобретения

Струйный датчик давления состоит из чувствительного элемента - пластины 1, подвешенной на газовой опоре 2. Для контроля давления Р предусмотрено входное сопло 3, из которого вытекает струя газа, нормально направленная на поверхность пластины 1. Поворот пластины 1 под действием контролируемого давления регистрируется изменением расстояния между соплом 4 и заслонки 5, жестко закрепленной на пластине 1. Между соплом 4 и питающим дросселем 6 расположена междроссельная измерительная камера 7, связанная со входом пневматического мембранного усилителя мощности 8. Выходной канал пневматического мембранного усилителя мощности 8 соединен с вторичным прибором 9 и соплом обратной связи 10. Для компенсации силового действия струи, исходящей из сопла 4, предусмотрено компенсирующее сопло 11, соединенное с междроссельной измерительной камерой 7. Через сопло 12 подается условный нулевой сигнал в виде струи газа под давлением Р0. Сопло 4 совместно с пневматическим мембранным усилителем мощности 8 и соплом обратной связи 10 образует регенеративную обратную связь с коэффициентом усиления большим единицы.

Изменение чувствительности струйного датчика давления достигается изменением соотношения плеч (расстояние от газовой опоры 2 до входного сопла 3) и (расстояние от газовой опоры 2 до сопла обратной связи 10) путем вращения винта 13. Подача газа контролируемого давления на входное сопло 3 обеспечивается клапаном 14.

Работает устройство следующим образом. Поток газа под контролируемым давлением Р подается на входное сопло 3 открытием клапана 14. Под силовым действием струи пластина 1 поворачивается на угол, пропорциональный поданному давлению, изменив при этом эффективную площадь считывающего элемента «сопло 4 - заслонка 5» в результате чего возрастает давление в междроссельной измерительной камере 7 и на выходе пневматического мембранного усилителя мощности 8, которое регистрируется вторичным прибором 9.

Силовое действие F струи газа из входного сопла 3 на пластину 1 под контролируемым давлением Р определяется выражением:

где k - эмпирический коэффициент, равный 0,9; Sc3=πdc32 - площадь выходного отверстия входного сопла 3, h - расстояние от входного сопла 3 до пластины 1; dc3 - диаметр выходного отверстия входного сопла 3.

На пластину 1 также будет действовать компенсирующая сила действия струи газа давлением Рвых из сопла обратной связи 10:

где Рвых - выходное давление; Sc10=πdc102 - площадь выходного отверстия сопла обратной связи 10; dc10 - диаметр выходного отверстия сопла обратной связи 10.

Механические моменты сил, воздействующих на пластину 1, равны:

где М - механический момент от силы действия F; Мк - компенсирующий механический момент; - площадь «следа» струи на пластине 1 при подаче струи из входного сопла 3; - площадь «следа» струи на пластине 1 при подаче струи из сопла обратной связи 10.

Условие равенства моментов определяется выражением:

Равенство (V) с учетом формул (III) и (IV) приобретает вид:

Учитывая, что в конструкции струйного датчика давления диаметры выходных отверстий сопел подбираются одинаковыми, то есть dc3=dc10, следует, что Sc3=Sc10 и S3=S10. Зависимость контролируемого давления Р от выходного давления Рвых будет равна:

Чувствительность к изменению контролируемого давления будет равна:

Согласно выражению (VIII) чувствительность струйного датчика давления является постоянной величиной и зависит только от соотношения расстояния от газовой опоры 2 до расположения входного сопла 3 и расстояния от газовой опоры 2 до сопла обратной связи 10.

Струйный датчик давления, содержащий чувствительный элемент, реагирующий на изменение давления, и измерительную схему, отличающийся тем, что чувствительный элемент выполнен в виде пластины, подвешенной на газовой опоре, а измерительная схема представляет собой измерительную компенсационную схему, включающую считывающий элемент в виде узла типа «сопло-заслонка», охваченный двумя соплами, расположенными до и после пневматического мембранного усилителя мощности, и образующий вместе с указанным усилителем и соплом обратной связи регенеративную обратную связь с коэффициентом усиления, большим единицы.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций из них.

Устройство относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций из них.

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения вибраций, давления и/или объемного напряженного состояния.

Изобретение относится к выявлению детонации в двигателе. Варианты осуществления могут предусматривать систему контроля детонации в двигателе, которая может включать в себя блок цилиндров двигателя, включающий в себя корпус блока цилиндров двигателя и стенку цилиндра, образующую по меньшей мере часть камеры сгорания.

Изобретение может быть использовано в системах управления двигателями внутреннего сгорания. Предложен способ для регулировки искрового зажигания и/или впрыска топлива в цилиндр двигателя на основании позднего сгорания, неполного сгорания или пропуска зажигания в соседнем цилиндре.

Изобретение относится к области измерения давлений пороховых газов при испытаниях порохов в манометрических бомбах и пороховых установках. Способ определения давления пороховых газов заключается в обеспечении снятия тепловой защиты чувствительного элемента датчика.

Изобретение относится к области средств автоматизации. Датчик давления с цифровым выходом содержит основной измерительный блок 1, состоящий из дифференциального реле давления 2 с рабочими плоскостями 3 и 4, разобщенными клапаном 5, и счетчика импульсов 6, двух дополнительных измерительных блоков 7 и 8 с реле давления 9 и 10, рабочие полости которых 11, 12 и 13, 14 разобщены соответственно клапанами 15 и 16, и счетчиков импульсов 17 и 18 с линиями сброса показаний 19 и 20, а также устройства измерения периода следования импульсов 21, соединенного своим входом с входом счетчика импульсов 6 и выходом реле давления 2.

Изобретение относится к области горной промышленности и может быть использовано для регистрации и сохранения основных параметров взрыва метанопылевоздушной смеси при распространении или затухании взрывов по горным выработкам.

Изобретение относится к области машиностроения, в частности к оптическим способам измерения импульсных давлений, а также к устройствам для их осуществления, и может найти применение при создании систем акустического мониторинга окружающей среды, акустических систем распознавания различных объектов, систем акустического контроля работы двигателей и различного технологического оборудования, в гидроакустике, аэродинамике.

Изобретение относится к машиностроению и может быть использовано при эксплуатации, контроле, испытании и диагностировании двигателей внутреннего сгорания (ДВС). .
Наверх