Активная петля связи свч резонатора водородного генератора

Изобретение относится к области квантовых стандартов частоты и может быть использовано при разработке и производстве водородных стандартов частоты. Техническим результатом является уменьшение кратковременной нестабильности частоты водородного стандарта. Для этого предусмотрена активная петля связи, состоящая из цилиндрического корпуса с центральным отверстием под коаксиальный кабель для съема усиленного сигнала и подачи питания на СВЧ усилитель, и поперечным пазом, в котором установлена печатная плата с вырезанной внутренней полостью, образующей петлю связи, закрепляемая в нем с помощью герметика, в нижней части платы смонтирован СВЧ усилитель, выполненный на двух транзисторах со 100% отрицательной обратной связью по постоянному току, обеспечивающую высокую температурную стабильность параметрам усилителя. 4 ил.

 

Изобретение относится к области квантовых стандартов частоты и может быть использовано при разработке и производстве водородных стандартов частоты (ВСЧ).

Известен широко используемый способ снятия СВЧ сигнала генерации с резонатора водородного генератора (ВГ) с помощью пассивной петли связи [1], заключающийся в том, что сигнал с петли связи резонатора 1 через коаксиальный кабель 2 подается на вход ферритового вентиля 3, служащего для уменьшения влияния внешних цепей на частоту резонатора, а затем через коаксиальный кабель 2 на вход усилителя СВЧ 4, где усиливается и далее подается на систему синхронизации 5 ПКЧВ (Фиг. 1). Стабильность частоты ВСЧ зависит, главным образом, от отношения сигнал/шум на входе системы синхронизации. Чем больше мощность сигнала генерации и чем меньше шумы приемного тракта, тем выше стабильность частоты ВСЧ. На коротких интервалах времени (1-10 с) стабильность частоты определяется, шумами приемного тракта. Проходя через пассивные цепи (кабели и ферритовый вентиль) сигнал ВГ затухает и приходит на вход усилителя СВЧ в ослабленном виде. При этом уменьшается мощность сигнала на выходе усилителя и, соответственно, на входе системы синхронизации, уменьшается и отношение сигнал/шум, что ухудшает стабильность частоты ВСЧ.

Недостатком данного способа является повышенный коэффициент шума приемного тракта за счет потерь мощности сигнала в пассивных цепях, находящихся перед усилителем СВЧ, что вызывает уменьшение отношения сигнал/шум и увеличивает кратковременную нестабильность частоты ВСЧ. Коэффициент шума приемного тракта, состоящего из пассивного и активного четырехполюсника, выражается формулой:

где: Fш пас - коэффициент шума пассивной цепи;

Kр пас - коэффициент передачи по мощности пассивной цепи;

Fш акт - коэффициент шума активной цепи (усилителя СВЧ).

Так как коэффициент передачи пассивной цепи Kр пас<1, то из формулы (1) видно, что коэффициент шума приемного тракта Fш>Fш акт.

Техническим результатом изобретения является уменьшение кратковременной нестабильности частоты водородного стандарта за счет увеличения отношения сигнал/шум вследствие уменьшения коэффициента шума приемного тракта и увеличения мощности генерации ВГ.

Поставленный технический результат достигают за счет того, что активная петля связи, состоящая из цилиндрического корпуса 8 с центральным отверстием под коаксиальный кабель 2 для съема усиленного сигнала и подачи питания на усилитель СВЧ, и поперечным пазом, в котором установлена печатная плата 7 с вырезанной внутренней полостью, образующей петлю связи 6, закрепляемая в нем с помощью герметика. В нижней части платы смонтирован СВЧ усилитель 4, выполненный на двух транзисторах со 100% отрицательной обратной связью по постоянному току, обеспечивающую высокую температурную стабильность параметрам усилителя.

Изобретение поясняется чертежами. На Фиг. 1 представлена функциональная схема СВЧ трака с пассивной петлей связи; на Фиг. 2 - функциональная схема СВЧ тракта с активной петлей связи; на Фиг. 3 - конструкция активной петли связи; на Фиг. 4 - принципиальная схема усилителя СВЧ.

Малошумящий усилитель СВЧ 4 устанавливают непосредственно на петле связи резонатора 6. При этом сигнал ВГ сразу усиливается, затем через коаксиальный кабель 2 подается на ферритовый вентиль 3 и далее на систему синхронизации 5 ПКЧВ (Фиг. 2). Через этот же коаксиальный кабель подается питание усилителя СВЧ. Вследствие того, что с усилителя СВЧ на ферритовый вентиль подается усиленный сигнал, влияние потерь мощности в пассивных цепях (кабель и ферритовый вентиль) на коэффициент шума приемного тракта мало. По аналогии с (1) коэффициент шума приемного тракта, состоящего из активного и пассивного четырехполюсника, выражается формулой:

где: Kр акт - коэффициент усиления по мощности активной цепи (усилителя СВЧ).

Так как Kр акт >> 1, то из формулы (2) видно, что коэффициент шума приемного тракта Fш ≈ Fш акт и мало зависит от потерь в пассивной цепи. Таким образом, уменьшение коэффициента шума приемного тракта за счет уменьшения потерь мощности сигнала в пассивных цепях приводит к увеличению отношения сигнал/шум, что вызывает уменьшение кратковременной нестабильности частоты ВСЧ.

Кроме этого конструкцию петли и усилителя СВЧ можно выполнить так, чтобы присутствовала некоторая электромагнитная связь усилителя СВЧ с полем резонатора. Вследствие этого в случае положительной обратной связи выходного сигнала усилителя СВЧ с полем резонатора, возможна некоторая компенсация потерь (регенерация) в резонаторе, заметно повышающая его добротность, что приводит к увеличению мощности генерации ВГ и, соответственно, к увеличению отношения сигнал/шум и к еще большему уменьшению кратковременной нестабильности частоты водородного стандарта. При этом влияние усилителя СВЧ 4 активной петли связи 7 на частоту резонатора мало, так как температура резонатора в водородных стандартах частоты поддерживается с очень высокой точностью, в пределах ±0,01°С, и может быть обеспечено очень стабильное напряжение питания усилителя СВЧ.

На Фиг. 3 представлена конструкция активной петли связи, в которой реализуются способы повышения отношения сигнал/шум ВГ как за счет уменьшения коэффициента шума приемного тракта, так и за счет увеличения мощности генерации, вследствие компенсации потерь в резонаторе ВГ. Активная петля связи состоит из корпуса 8, в котором установлена печатная плата с вырезанной внутренней полостью 6, образующую петлю связи. В нижней части платы смонтирован СВЧ усилитель 4. Съем усиленного сигнала и подача питания осуществляется посредством коаксиального кабеля 2, нагрузкой которого является ферритовый вентиль 3. Питание на усилитель СВЧ подается через резистор R5 (Фиг. 2). Конденсатор С6 обеспечивает развязку цепи питания и цепи СВЧ сигнала.

Печатная плата с усилителем СВЧ активной петли связи установлена в поперечном пазе корпуса 8 и фиксируется герметиком, имеющим небольшие потери на СВЧ. Коаксиальный кабель выводится через центральное отверстие в корпусе 8. Активная петля связи в собранном виде устанавливается в цилиндрическом углублении внутри резонатора и крепится гайкой 9 к одной из его стенок (как правило, торцевых) так, чтобы магнитные силовые линии электромагнитного поля проходили через ее внутреннюю полость. При этом электромагнитное поле резонатора частично проникает в поперечный паз корпуса и взаимодействует с усиленным выходным сигналом усилителя СВЧ, за счет чего, в случае положительной обратной связи, происходит компенсация потерь в резонаторе. Величина и знак этой обратной связи зависит от конструкции активной петли связи и схемы построения усилителя СВЧ.

Схема усилителя СВЧ представлена на Фиг. 4. Усилитель СВЧ выполнен на малошумящих СВЧ транзисторах по двухкаскадной схеме с 100% отрицательной обратной связью по постоянному току, обеспечивающей малую зависимость параметров усилителя от температуры. Выходной сигнал снимается с коллектора транзистора VT2 посредством цепи L2, С3, С4. Питание каскадов усилителя СВЧ осуществляется через дроссель L1, коаксиальный кабель 4, резистор R5. Усилитель СВЧ, выполненный по данной схеме, имеет достаточное устойчивое усиление и обеспечивает требуемую положительную обратную связь между выходным сигналом и полем резонатора, что дает возможность повысить добротность СВЧ резонатора.

Технический результат предложенного решения активной петли связи состоит в уменьшении кратковременной нестабильности частоты водородного стандарта в 1,5-2 раза по сравнению с использованием пассивной петли связи.

Литература

1. В.П. Сысоев, Ю.С. Самохвалов, Н.М. Грачев, В.П. Королев, М.И. Алексеев, С.А. Пентин, А.Ю. Хлопотин. Перевозимые квантовые часы на основе активного водородного генератора. Труды 6 Международного симпозиума «Метрология времени и пространства» 17-19 сентября 2012. С. 126-139.

Активная петля связи, состоящая из цилиндрического корпуса с центральным отверстием под коаксиальный кабель для съема усиленного сигнала и подачи питания на СВЧ усилитель, и поперечным пазом, в котором установлена печатная плата с вырезанной внутренней полостью, образующей петлю связи, закрепляемая в нем с помощью герметика, в нижней части платы смонтирован СВЧ усилитель, выполненный на двух транзисторах со 100% отрицательной обратной связью по постоянному току, обеспечивающую высокую температурную стабильность параметрам усилителя.



 

Похожие патенты:

Изобретение относится к области электротехники. Технический результат – разработка устройства для генерирования многофазной системы напряжений требуемой частоты, требуемыми величинами амплитуд напряжений фаз и числа фаз за счет использования механической коммутации источников ЭДС с целью расширения области применения генератора многофазной системы ЭДС.

Изобретение относится к электронно-вычислительной технике. Технический результат изобретения заключается в расширении динамического диапазона радиотехнических систем при аналого-цифровом и цифро-аналоговом преобразовании сигналов при одинаковой разрядности АЦП и ЦАП.

Изобретение относится к области электротехники и предназначено для генерирования многофазной системы напряжений с заданной частотой и заданным числом фаз на основе использования импульсной техники.

Изобретение относится к радиопередатчикам. Технический результат изобретения заключается в обеспечении более высокой стабильности частоты и девиации при более широких диапазонах температур и изменений напряжения питания.

Изобретение относится к радиотехнике и может быть использовано в качестве формирователей сигналов в передатчиках устройств связи различного назначения. Технический результат заключается в обеспечении формирования широкополосного сигнала с синфазными частотными составляющими с равномерной АЧХ за время, соизмеримое со значением периода, соответствующего нижней частоте сигнала.

Изобретение относится к импульсной технике и может быть использовано для формирования мощных СВЧ-импульсов заданной формы в составе передатчиков радиолокационных станций, использующих СВЧ-приборы с сеточным управлением.

Изобретение относится к электронной технике и аудиотехнике, предназначено для расширения динамического диапазона и может быть использовано в аудиотехнике, радиотехнических системах различного назначения.

Изобретение относится к радиотехнике и может быть использовано в радиоизмерительной технике и радиосвязи. Достигаемый технический результат - обеспечение установления необходимого характера затухания в регламентируемых колебаниях (РК).

Изобретение относится к радиотехнике и может использоваться для генерирования колебаний специальной формы. .

Изобретение относится к измерительной технике м может быть ИСПОЛЬЗОБЙНО в составе вихретоковых дефектоскопе при, нчразрушяющем контроле. .
Наверх