Система криогенного хранения и подачи реагентов для энергетической установки с электрохимическими генераторами

Изобретение относится к системам криогенного хранения и подачи реагентов (СКХР), а именно к системам криогенного хранения и подачи жидкого водорода и жидкого кислорода на подводных лодках и подводных аппаратах (ПА) с энергетическими установками на базе электрохимических генераторов. Предложенное техническое решение для СКХР в энергетическом модуле ПА позволяет получить СКХР с минимальными габаритами и массой конструкции, а выполнение кислородной емкости в виде полого сосуда кольцевой формы, внутрь которого устанавливается водородная емкость, обеспечивает минимальные теплопритоки извне, что значительно увеличивает время хранения криогенного водорода без энергозатрат на его охлаждение или незначительное испарение без повышения давления внутри емкости за счет минимального его потребления в режимах движения ПА. Внутренняя герметичная полость наружного вакуумного корпуса, в котором размещены емкости для водорода и кислорода, выполнена с экранно-вакуумной изоляцией, при этом емкость для кислорода снабжена боковыми негерметичными теплопроводными перегородками, закрывающими емкость для водорода, образующими дополнительный теплоизолирующий экран. Повышение срока хранения охлажденного водорода является техническим результатом изобретения. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к системам криогенного хранения газов, а конкретно к системам криогенного хранения и подачи реагентов (СКХР): жидкого водорода и жидкого кислорода на подводных лодках (ПЛ) и подводных аппаратах (ПА) с энергетическими установками (ЭУ) на базе электрохимических генераторов (ЭХГ).

Одной из основных задач при создании новых неатомных ПЛ и ПА является задача увеличения автономности и дальности подводного плавания.

Большинством разработчиков эта задача решается за счет применения на ПЛ и ПА ЭУ с ЭХГ. Доля систем хранения топлива для ЭУ с ЭХГ в водоизмещении этих подводных средств может достигать 50% для ПЛ и ПА со сверхбольшой дальностью подводного плавания.

Первой в мире ПЛ с ЭУ с ЭХГ явилась подводная лодка проекта 613Э («Катран»).

На этой лодке СКХР состоит из 2 прочных емкостей кислорода (запас О2 - 32т) и 2-х прочных емкостей водорода (запас Н2 - 4т), которые установлены снаружи корпуса. (Журнал «Судостроение» №2, 1998 г, стр. 25-28, А.А. Постнов «Опытная подводная лодка проекта 613Э с электрохимическими генераторами»).

Размещение СКХР снаружи прочного корпуса (ПК) приводит к резкому увеличению сопротивления воды и к высокой уязвимости от возможных внешних воздействий.

Указанные недостатки устранены в проекте ЭУ с ЭХГ «РЭУ-99». «РЭУ-99» представляет собой автономную энергоустановку с криогенным хранением реагентов, встраиваемую в отсек ПЛ. (История развития подводных лодок с воздухонезависимыми энергоустановками в России и СССР / Труды Нижегородского государственного университета им. Р.Е. Алексеева №4 (97), стр. 192.: http://old.nntu.ru/trudy/2012/04/192-201.pdf/).

Наиболее близким аналогом является СКХР предложенная в патенте №2184408.

Недостатками СКХР по указанному патенту являются:

- большое количество криогенных емкостей (2 шт. для водорода - в вертикальных шахтах, 2 шт. для кислорода - в горизонтальных емкостях), что увеличивает габариты отсека;

- большое количество отдельных герметичных выгородок, что приводит к увеличению веса конструкции и сложностям при монтаже оборудования;

- техническое решение требует применения прочного корпуса с большим диаметром, что не позволяет использовать эту СКХР на ПА с малыми диаметрами прочных корпусов.

Емкости для хранения сжиженных газов для уменьшения теплопритоков выполняют с экранно-вакуумной изоляцией. Внутренняя емкость с жидким газом крепится к наружному кожуху через крепления, обеспечивающие минимальные теплопритоки.

Однако, их крепление к обшивке, имеющей контакт с окружающей средой и собственная испаряемость жидкого водорода в криогенных сосудах с высокоэффективной экранно-вакуумной изоляцией превышает минимальный расход этого реагента на ЭХГ на экономических скоростях, что приводит к росту давления в криогенных емкостях. Невозможность сброса избытка давления водорода за борт требует либо увеличения мощности ЭХГ и использования ПЛ на больших скоростях хода, либо установки дополнительных систем охлаждения водорода.

В обоих случаях эффективность применения ЭУ с ЭХГ резко падает.

Целью изобретения является предложить конструкцию СКХР, обеспечивающую хранение водорода в криогенном состоянии без дополнительных расходов энергии на его охлаждение и обеспечивающую уменьшение массогабаритных характеристик СКХР.

Поставленная цель достигается тем, что емкость для водорода и емкость для кислорода устанавливаются внутри одного наружного вакуумного корпуса СКХР, сделанного в форме цилиндрической оболочки с торцевыми стенками, при этом емкость для кислорода выполняется в виде сосуда кольцевой формы, располагаемого вокруг цилиндрической емкости для водорода.

При этом в поперечном сечении система криогенного хранения реагентов имеет концентрическое расположение емкостей. Емкость для водорода к емкости для кислорода и емкость для кислорода к наружному вакуумному корпусу крепятся тепловыми мостиками из материала с низкой теплопроводностью 9 (фиг. 1).

Иллюстрация на фигуре 1 поясняет сущность заявляемого технического решения СКХР:

1. наружный вакуумный корпус;

2. емкость для кислорода;

3. наружная цилиндрическая оболочка емкости для кислорода;

4. внутренняя цилиндрическая оболочка емкости для кислорода;

5. концевые донышки емкости для кислорода;

6. емкость для водорода;

7. внутренняя полость наружного вакуумного корпуса;

8. негерметичные теплопроводные перегородки;

9. тепловые мостики из материала с низкой теплопроводностью.

СКХР водорода и кислорода размещается внутри наружного вакуумного корпуса 1, выполняющего роль вакуумной оболочки. Емкость для кислорода 2 выполняется в виде сосуда кольцевой формы, полого цилиндра, состоящего из наружной цилиндрической оболочки емкости для кислорода 3 и внутренней цилиндрической оболочки емкости для кислорода 4, замкнутых концевыми донышками емкости для кислорода 5. Емкость для водорода 6 выполняется в виде цилиндра с концевыми донышками емкости для водорода. Внутренняя полость наружного вакуумного корпуса 7 герметичная и выполняется с экранно-вакуумной изоляцией.

Емкость для кислорода 2 с боковыми негерметичными теплопроводными перегородками 8, закрывающими емкость для водорода и выполняющими роль дополнительного теплоизолирующего экрана для размещенной внутри емкости для водорода 6, что обеспечивает минимальное испарение водорода и длительное его хранение без потребления дополнительной энергии на его охлаждение.

Такое конструктивное выполнение СКХР в энергетическом модуле ПА позволяет получить СКХР с минимальными габаритами и массой конструкции, а выполнение кислородной емкости в виде полого сосуда кольцевой формы, внутрь которого устанавливается водородная емкость, обеспечивает минимальные теплопритоки извне, что значительно увеличивает время хранения криогенного водорода без энергозатрат на его охлаждение или незначительное испарение без повышения давления внутри емкости за счет минимального его потребления в режимах движения ПА.

Источники информации:

1. История развития подводных лодок с воздухонезависимыми энергоустановками в России и СССР / Труды Нижегородского государственного университета им. Р.Е. Алексеева №4 (97), стр. 192.

2. Опытная подводная лодка проекта 613Э с электрохимическими генераторами. Журнал «Судостроение» №2, 1998 г, стр. 25-28, А.А. Постнов.

1. Система криогенного хранения и подачи реагентов для энергетической установки с электрохимическими генераторами, включающая емкости для жидкого водорода и кислорода, отличающаяся тем, что емкость для водорода и емкость для кислорода расположены внутри одного наружного вакуумного корпуса в форме цилиндрической оболочки с торцевыми стенками, при этом емкость для кислорода выполнена в виде сосуда кольцевой формы, располагаемого вокруг цилиндрической емкости для водорода.

2. Система криогенного хранения и подачи реагентов по п. 1, отличающаяся тем, что в поперечном сечении система криогенного хранения реагентов имеет концентрическое расположение емкостей.

3. Система криогенного хранения и подачи реагентов по п. 1, отличающаяся тем, что емкость для кислорода имеет боковые негерметичные теплопроводные перегородки, закрывающие емкость водорода и выполняющие роль дополнительного теплоизолирующего экрана для размещенной внутри нее емкости водорода.

4. Система криогенного хранения и подачи реагентов по п. 1, отличающаяся тем, что емкость для водорода к емкости для кислорода и емкость для кислорода к наружному вакуумному корпусу крепятся тепловыми мостиками из материала с низкой теплопроводностью.

5. Система криогенного хранения и подачи реагентов по п. 1, отличающаяся тем, что внутри наружного вакуумного корпуса находится герметичная полость, выполненная с экранно-вакуумной изоляцией.



 

Похожие патенты:

Изобретение относится к области водородной энергетики и предназначено для использования в источниках энергии на водородных топливных элементах. Способ включает использование гидрида магния в качестве металлогидридного топлива, просеивание и измельчение металлогидридного топлива, уплотнение засыпки металлогидридного топлива в химическом картридже, прогрев засыпки металлогидридного топлива и проведение реакции металлогидридного топлива с водяным паром.

Изобретение может быть использовано в химической промышленности. Способ управления химическим источником водорода на основе гидрида магния включает в себя следующие действия: прогревают зону образования водорода до заранее заданной начальной температуры 90-170°С; определяют начальное значение расхода воды; подают воду в зону образования водорода в соответствии с начальным значением расхода воды; измеряют параметр, характеризующий образование водорода; если значение этого параметра выше первого заранее заданного значения, уменьшают подачу воды в зону образования водорода, если значение этого параметра ниже второго заранее заданного значения, увеличивают подачу воды в зону образования водорода.

Изобретение относится к области электротехники, в частности к энергоустановкам на основе топливных элементов (ТОТЭ) для выработки электроэнергии из углеводородного топлива и предназначенных для электропитания автономных потребителей.

Изобретение относится к системе на основе топливных элементов и устройству управления. Система на основе топливных элементов включает в себя блок регулирования давления, который располагается в пути подачи для подачи водорода и снижает давление водорода, подаваемого к батарее топливных элементов, устройство расширения, которое располагается выше по потоку от клапана регулирования давления в пути подачи и снижает давление и расширяет водород, подаваемый из водородного бака, и второй регулирующий клапан, который располагается выше по потоку от устройства расширения в пути подачи и приспособлен переключаться в одно из открытого состояния, в котором водород подается к устройству расширения, и закрытого состояния, в котором подача водорода к устройству расширения прерывается или объем водорода, подаваемого к устройству расширения, меньше объема в открытом состоянии.

Изобретение относится преимущественно к машиностроению, а также химической промышленности, транспорту, энергетике и к другим отраслям промышленности. Способ выработки озона из кислорода воздуха заключается в том, что работу строчных образований пластин топливных элементов из железа и никеля обеспечивают вибрацией при резонансном действии на них ультразвуком.

Изобретение относится к области электротехники, а именно к способу и системе для получения диоксида (435) углерода, очищенного водорода (213) и электричества из сырьевого реформированного технологического газа (205) с использованием твердооксидного топливного элемента (SOFC) (2), при этом способ и система включают этапы: введения реформированного технологического газа (205) в SOFC (2); в SOFC (2) преобразования водорода и монооксида углерода реформированного технологического газа (205) в комбинации с кислородом в анодный отходящий газ (208), содержащий пар, диоксид углерода и непрореагировавший технологический газ; введения анодного отходящего газа (208) в высокотемпературный реактор (8) конверсии водяного газа; в высокотемпературном реакторе (8) конверсии водяного газа преобразования монооксида углерода и пара в диоксид углерода и водород, введения газа (216), выходящего из высокотемпературного реактора (8) конверсии водяного газа, в низкотемпературный мембранный реактор (4) конверсии водяного газа, в низкотемпературном мембранном реакторе (4) конверсии водяного газа преобразования монооксида углерода и пара в диоксид углерода и водород, при этом низкотемпературный мембранный реактор (4) конверсии водяного газа содержит водородный насос (9), который вырабатывает очищенный водород (213) на стороне (41) для проникания, одновременно удаляя водород с сырьевой стороны (44).

Изобретение относится к области электротехники, в частности к энергоустановкам на основе твердооксидных топливных элементов для совместной выработки электроэнергии и теплоты, использующим углеводородное топливо и предназначенным для локальных потребителей, а также к модулям и батареям на основе топливных элементов, применяемых в автономных и резервных энергоустановках.

Изобретение относится к области электротехники, а именно к системе на основе среднетемпературных твердооксидных топливных элементов (СТ-ТОТЭ), содержащей: (i) по меньшей мере одну батарею топливных элементов, содержащую по меньшей мере один среднетемпературный твердооксидный топливный элемент и имеющую анодный вход, катодный вход, анодный выход отходящего газа, катодный выход отходящего газа, и образующую отдельные пути потоков для потока входящего анодного газа, входящего катодного газа, отходящего анодного газа и отходящего катодного газа; и (ii) паровой реформер, предназначенный для риформинга углеводородного топлива в продукт риформинга и имеющий вход реформера для входящего анодного газа, выход реформера для выпуска входящего анодного газа и теплообменник реформера, при этом упомянутый теплообменник реформера представляет собой прямоточный теплообменник в проточном сообщении с (i) упомянутым по меньшей мере одним входом окислителя и катодным входом упомянутой по меньшей мере одной батареи топливных элементов и (ii) упомянутым источником топлива и анодным входом упомянутой по меньшей мере одной батареи топливных элементов, и предназначен для теплообмена между упомянутым входящим катодным газом и упомянутым входящим анодным газом.

Изобретение относится к электрохимическому способу получения глюкозы и системе для его осуществления, которые могут быть применены в химической промышленности. Предложенный способ включает реагирование воды и растворенного в ней газообразного диоксида углерода в присутствии источника электромагнитной энергии и меланина, удерживаемого на подложке, так что получается глюкоза.

Изобретение относится к электрохимическим системам аккумулирования и генерирования энергии, в частности к проточной батарее с разрядной системой, системой регенерации и составу окислительной жидкости.

Резервуар для криогенной жидкости относится к устройствам для хранения и транспортирования сжиженного природного газа (СПГ), а именно к конструкции опорных элементов, служащих для крепления внутренних теплоизолированных сосудов в герметичных наружных кожухах (оболочках) резервуаров и предохранения внутреннего сосуда от продольных перемещений в процессе транспортировки криогенных продуктов и компенсации температурных деформаций.

Герметичный изолированный резервуар, в котором вспомогательный изоляционный барьер, вспомогательная герметизирующая мембрана и основной изоляционный барьер по существу состоят из набора сборных панелей (54), расположенных бок о бок на опорной конструкции.

Изобретение относится к области хранения и отгрузки сжиженного природного газа и может быть использовано для решения проблем транспортировки сжиженного природного газа (СПГ) морским транспортом, в частности, на экспорт.

Настоящее изобретение относится к герметизированному и теплоизолированному резервуару для хранения жидкостей, содержащему вспомогательный теплоизоляционный барьер (1) и вспомогательную уплотнительную мембрану (4).

Изобретение относится к хранению сжиженного газа. Процесс инертирования стенки непроницаемого и термоизоляционного резервуара (1), в котором стенка имеет многослойную конструкцию, содержащую два непроницаемых барьера (2, 4) и один термоизоляционный барьер (3).

Изобретение относится к устройствам для хранения сжиженных газов. Герметичный и теплоизолированный резервуар вмонтирован в несущую конструкцию, имеющую множество несущих стенок (1, 2), содержит множество стенок резервуара, неподвижно прикрепленных к соответствующим несущим стенкам.

Изобретение относится к сосудам для хранения газов. Предложена коробчатая конструкция для термоизоляции резервуара для текучей среды.

Изобретение относится к области хранения и транспортировки сжиженного газа. Предложен герметичный и теплоизолированный резервуар, в котором первая стенка (6) резервуара и примыкающая вторая стенка (7) резервуара образуют край (8).

Изобретение относится к криогенной технике, в частности к криогенному емкостному оборудованию, и может быть использовано для хранения и транспортирования сжиженного природного газа под повышенным давлением.

Группа изобретений относится к хранению газов или жидкостей. Герметичный и теплоизолированный резервуар, имеющий стенку, закрепленную на несущей конструкции (2) и содержащую теплоизолирующий барьер (1), герметичный барьер (4) и анкерный компонент (3).

Изобретение относится к системам криогенного хранения и подачи реагентов, а именно к системам криогенного хранения и подачи жидкого водорода и жидкого кислорода на подводных лодках и подводных аппаратах с энергетическими установками на базе электрохимических генераторов. Предложенное техническое решение для СКХР в энергетическом модуле ПА позволяет получить СКХР с минимальными габаритами и массой конструкции, а выполнение кислородной емкости в виде полого сосуда кольцевой формы, внутрь которого устанавливается водородная емкость, обеспечивает минимальные теплопритоки извне, что значительно увеличивает время хранения криогенного водорода без энергозатрат на его охлаждение или незначительное испарение без повышения давления внутри емкости за счет минимального его потребления в режимах движения ПА. Внутренняя герметичная полость наружного вакуумного корпуса, в котором размещены емкости для водорода и кислорода, выполнена с экранно-вакуумной изоляцией, при этом емкость для кислорода снабжена боковыми негерметичными теплопроводными перегородками, закрывающими емкость для водорода, образующими дополнительный теплоизолирующий экран. Повышение срока хранения охлажденного водорода является техническим результатом изобретения. 4 з.п. ф-лы, 1 ил.

Наверх