Теплообменная поверхность

Изобретение относиться к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. На теплообменной поверхности выполнены углубления овально-дуговой формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрическим торообразным сегментом длиной l, при этом касательная к направляющей кривой вышеупомянутого сегмента составляет угол ϕ=45° по отношению к направлению потока в начале углубления и угол ϕ=0° в конце углубления. Технический результат - повышение теплогидравлической эффективности теплообменной поверхности. 4 ил.

 

Изобретение относиться к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена (Патент РФ №2425260. Заявка 2009111020/06 от, 31.08.2006. Опубликовано 27.07.2011 Бюл. №21). Поверхность характеризуется тем, что на гладкой поверхности с защитным слоем или без него выполнены углубления, образованные сопряженными по общим касательным выпуклыми и вогнутыми поверхностями второго порядка, при этом сопряжение углубления с исходно гладкой поверхностью осуществляется с помощью выпуклых поверхностей образующих скаты, для которых в местах сопряжения исходно гладкая поверхность является касательной, причем вогнутая поверхность, образующая донную часть углубления, выполнена гладкой или с обтекателем.

Известна теплообменная поверхность с траншейными углублениями (Патент РФ №2684303. Заявка 2018121892 от 13.06.2018. 05.04.2019 Бюл. №10). Теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя характеризуется тем, что выполнена в виде периодически нанесенных углублений, отличающаяся тем, что углубления сформированы овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку, с геометрическими соотношениями: l/b=4,7-5,78 или lк/b=5,57-6,78; ϕ=45°; h/b=0,18-0,37; r=0,025b; l - длина цилиндрической части углубления, мм; lк - длина углубления, мм; h - глубина, мм; b - ширина углубления, мм; r - радиус скругления кромок углубления, мм; ϕ - угол натекания потока на углубление, градусы.

Анализ результатов численных исследований (Isaev, S.A., Leontiev, A.I., Milman, О.О., Popov, I.A., Sudakov, A.G. Influence of the depth of single-row oval-trench dimples inclined to laminar air flow on heat transfer enhancement in a narrow micro-channel // International Journal of Heat and Mass Transfer. May 2019, Pages 338-358; Isaev, S., Leontiev, A., Chudnovsky, Y., Nikushchenko, D., Popov, I., Sudakov, A. Simulation of vortex heat transfer enhancement in the turbulent water flow in the narrow plane-parallel channel with an inclined oval-trench dimple of fixed depth and spot area // Energies, Volume 12, Issue 7, 4 April 2019, paper №1296) картин растекания и полей локальных коэффициентов теплоотдачи в удлиненных овально траншейных выемок, сформированных по рекомендациям (Теплообменная поверхность / С.А. Исаев, А.И. Леонтьев, П.А. Баранов, И.А. Попов, А.В. Щелчков, Ю.Ф. Гортышов, А.Н. Скрыпник, А.А. Миронов // Патент РФ №2684303. Заявка 2018121892 от 13.06.2018. 05.04.2019 Бюл. №10), выявил, что в области крайней по ходу течения кромки выемки возникают области с пониженными скоростями и малыми локальными коэффициентами теплоотдачи. Как показано, удлинение выемки, а значит появление данных областей, неизбежно, но необходимы решения по повышению скорости течения и, как следствие, локальных коэффициентов в них.

Наиболее близким аналогом к заявляемому изобретению являются теплообменные поверхности с углублениями, полученными протяжкой сферической выемки по дуге окружности (Киселев Н.А., Бурцев С.А., Стронгин М.М., Виноградов Ю.А. Экспериментальное исследование теплообмена и сопротивления лунок сложной формы // Труды Юбилейной конференции Национального комитета РАН по тепло- и массообмену «Фундаментальные и прикладные проблемы тепломассообмена» и XXI Школы-семинара молодых ученых и специалистов под руководством акад. РАН А.И. Леонтьева «Проблемы газодинамики и тепломассобмена в энергетических установках». Том. 2.: М.: Издательский дом МЭИ, 2017. с. 124-127.). Результаты исследований теплообменных поверхностей с данными углублениями показывают повышение тепловой эффективности до St/Stгл=1,2 по сравнению с гладким каналом, что выше достигнутых значений для сферических углублений (St/Stгл=1,18) и овальных углублений (St/Stгл=1,175) при турбулентном режиме течения (Re=4⋅106). Однако трение поверхностей с углублениями, полученными протяжкой сферической выемки по дуге окружности, повышается до сххгл=1,27 по сравнению с гладкой поверхностью. Для сравнения, повышение коэффициентов трения поверхностей со сферическими углублениями составляет сххгл=1,27 и овальными углублениями - сххгл=1,1, при турбулентном режиме течения (Re=4⋅106). Такое сочетание повышения тепловой эффективности и роста коэффициентов трения позволяет достичь повышения теплогидравлической эффективности (фактора аналогии Рейнольдса) для поверхностей с углублениями, полученными протяжкой сферической выемки по дуге окружности, (St/Stгл)/(cx/cхгл)=0,97, для поверхностей с овальными углублениями - (St/Stгл)/(cx/cхгл)=0,82, для поверхностей со сферическими углублениями - (St/Stгл)/(cx/cхгл)=1,07.

Однако известные теплообменные поверхности характеризуются низкой тепловой и теплогидравлической эффективностью, а также высокими потерями энергии потока на трение.

Технической проблемой, на решение которой направлено заявляемое изобретение, является повышение тепловой эффективности теплообменной поверхности с углублениями (St/Stгл>1) относительно гладкостенной теплообменной поверхности при меньшем приросте гидравлического сопротивления (St/Stгл)>(cx/cxгл). Техническим результатом является повышение теплогидравлической эффективности теплообменной поверхности.

Технический результат достигается за счет того, что теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя, выполненная в виде периодически нанесенных углублений овально-дуговой формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрическим торообразным сегментом длиной l, отличающаяся тем, что касательная к направляющей кривой к вышеупомянутому сегменту составляет угол ϕ=45° по отношению к направлению потока в начале углубления и угол ϕ=0° в конце углубления (фиг. 1) с геометрическими соотношениями:

l/b=4,7-5,78 или lк/b=5,57-6,78;

h/b=0,18-0,37;

r=0,025b;

l - длина цилиндрической части углубления, мм;

lк - длина углубления, мм;

h - глубина углубления, мм;

b - ширина углубления, мм;

r - радиус скругления кромок углубления, мм;

ϕ - угол между направлением потока и касательной к направляющей кривой торообразного сегмента.

Перечень фигур:

На фигуре 1 представлена схема углубления на теплообменной поверхности с условным обозначением геометрических размеров и направление течения потока относительно теплообменной геометрии.

На фигуре 2 представлен поперечный разрез предлагаемой геометрии углубления в сечении А-А обозначенном на фигуре 1 с указанием условных обозначений геометрических размеров.

На фигуре 3 представлены линии тока при обтекании удлиненного овально-дугового углубления, полученные расчетным путем.

На фигуре 4 представлены поля локальных коэффициентов теплоотдачи поверхности с удлиненным овально-дуговым углублением, полученные расчетным путем.

Данная геометрия углублений является поверхностным генератором спиралевидных высокоинтенсивных моновихрей и позволяет повысить скорость вторичного течения до величин порядка характерной скорости потока в стесненном канале (среднемассовой или максимальной), что в несколько раз превышает скорости вторичного течения, индуцированные традиционными сферическими выемками, и отличается высокой стабильностью и интенсивностью вихревого течения в следе за ним по сравнению с аналогами в виде овальных выемок различного удлинения, предложенными в (Теплообменная поверхность / С.А. Исаев, А.И. Леонтьев, П.А. Баранов, И.А. Попов, А.В. Щелчков, Ю.Ф. Гортышов, А.Н. Скрыпник, А.А. Миронов // Патент РФ №2684303. Заявка 2018121892 от 13.06.2018. 05.04.2019 Бюл. №10), обеспечивая значительное превосходство удлиненных овально-дуговых углублений по тепловой и теплогидравлической эффективности.

Результаты численных исследований (Isaev, S.A., Leontiev, A.I., Milman, О.О., Popov, I.A., Sudakov, A.G. Influence of the depth of single-row oval-trench dimples inclined to laminar air flow on heat transfer enhancement in a narrow micro-channel // International Journal of Heat and Mass Transfer. May 2019, Pages 338-358; Isaev, S., Leontiev, A., Chudnovsky, Y., Nikushchenko, D., Popov, I., Sudakov, A. Simulation of vortex heat transfer enhancement in the turbulent water flow in the narrow plane-parallel channel with an inclined oval-trench dimple of fixed depth and spot area // Energies, Volume 12, Issue 7, 4 April 2019, paper №1296) картин растекания (фиг. 3) показали отсутствие застойных зон во второй половине углублений, а результаты численного прогнозирования и экспериментального исследования - увеличение локальных скоростей в ней и повышение локальных коэффициентов теплоотдачи (фиг. 4).

Результаты экспериментальных исследований подтвердили величины значений коэффициентов теплоотдачи и трения полученные расчетным путем. Исследования коэффициентов сопротивления и теплоотдачи проводилось как при течении воды, так и воздуха в каналах со стенкой, покрытой одно- и многорядными системами овально-траншейных и удлиненных овально-дуговых углублений. Установлено, что коэффициенты гидравлического сопротивления канала с односторонним расположением удлиненных овально-дуговых углублений h/b=0,5; l/b=7 на 10-13% ниже, чем у канала с односторонним расположением системы овально-траншейных выемок и на 20-25% ниже чем для поверхности с углублениями, полученными протяжкой сферической выемки по дуге окружности тех же относительных размеров при расположении к потоку входных кромок 45°. Исследование теплоотдачи на поверхностях с одно- и многорядными системами овально-траншейных и удлиненных овально-дуговых углублений показало, что средняя разница температур поверхности и потока при фиксированном тепловом потоке для систем овально-дуговых выемок на 5-20% ниже при различных скоростях потока, чем для поверхностей с овально-траншейными выемками и на 20-40% ниже чем для поверхности с углублениями, полученными протяжкой сферической выемки по дуге окружности.

Таким образом, сравнение предлагаемой конструкции теплообменной поверхности по теплогидравлической эффективности (критерию аналогии Рейнольдса) с овально-траншейными углублениями и с углублениями, полученными протяжкой сферической выемки по дуге окружности показывает их преимущество при соблюдении геометрических соотношений размеров углубления: l/b=4,7-5,78 или lк/b=5,57-6,78; ϕ=45°; h/b=0,18-0,37; r=0,025b.

Теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя, выполненная в виде периодически нанесенных углублений овально-дуговой формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрическим торообразным сегментом длиной l, отличающаяся тем, что касательная к направляющей кривой вышеупомянутого сегмента составляет угол ϕ=45° по отношению к направлению потока в начале углубления и угол ϕ=0° в конце углубления с геометрическими соотношениями:

или

h/b=0,18-0,37;

r=0,025b;

- длина цилиндрической части углубления, мм;

- длина углубления, мм;

h - глубина углубления, мм;

b - ширина углубления, мм;

r - радиус скругления кромок углубления, мм;

ϕ - угол между направлением потока и касательной к направляющей кривой торообразного сегмента.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплопередающая пластина (8) теплообменника (2) содержит теплопередающую структуру гребней (36) и впадин (38), расположенных в чередующемся порядке относительно центральной плоскости (С) протяженности.

Пластинчатый ребристый теплообменник содержит множество ребристых холодных рядов, выполненных с возможностью проводить первую текучую среду, и множество ребристых теплых рядов, выполненных с возможностью проводить вторую текучую среду.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Проволочный разделитель (20) для разделения двух смежных теплопередающих пластин (2, 4) пластинчатого теплообменника (1).

Пластина (1) для пластинчатого теплообменника (12) для использования в системе (9) для концентрирования веществ в воде. Теплообменная зона (2) определяет множество первых каналов на первой поверхности пластины (1) и множество вторых каналов на второй поверхности пластины (1).

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Способ изготовления пластинчатого теплообменника, заключающийся в том, что наружные и внутренние гофрированные пластины изготавливают методом штамповки, а затем попарно соединяют по периферийным кромкам, а образованные при этом теплообменные элементы (1) соединяют друг с другом с помощью наружного цилиндрического корпуса, двух периферийных (3, 4) и одного центрального (2) разделительных колец, в каждом теплообменном элементе (1) выполняют отбортовки (11, 12), образующие впускные и выпускные коллекторные окна (13, 14), таким образом, что они (11, 12) выступают за периферийную кромку пластин по внутреннему диаметру теплообменника, при этом периферийные (3, 4) кольца изготавливают соединением по меньшей мере двух соединительных элементов (15) таким образом, чтобы они образовывали замкнутую линию, при этом в каждый соединительный элемент (15) устанавливают по меньшей мере два теплообменных элемента (1).

Панель теплообмена и уменьшения шума для газотурбинного двигателя, в частности, авиационного газотурбинного двигателя, содержит наружную поверхность (22), которая предназначена для обдувания воздушным потоком и начиная от которой выполнены пластинки (26) в заранее определенных первом и втором главных направлениях, при этом полости (20) образуют резонаторы Гельмгольца и соединены с первыми концами (30) воздушных каналов, вторые концы которых сообщаются с упомянутым воздушным потоком таким образом, что упомянутые каналы образуют сужения упомянутых резонаторов Гельмгольца, проходящих по существу в первом направлении, по меньшей мере одну масляную камеру (16), расположенную между упомянутой наружной поверхностью и упомянутой по меньшей мере одной полостью и предназначенную для удаления тепловой энергии, сообщаемой маслом, причем, упомянутые каналы по меньшей мере частично выполнены в упомянутых пластинках.

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Пластинчатый теплообменник содержит первую секцию теплообменника, которая включает цилиндрический наружный корпус, одно центральное и два периферийный разделительных кольца, размещенные между корпусом и кольцами и опирающиеся на центральное разделительное кольцо теплообменные элементы, выполненные из попарно соединенных по периферийным кромкам гофрированных пластин, при этом теплообменные элементы имеют выступающие за периферийную кромку отбортовки, образующие впускные и выпускные коллекторные окна, соединенные без зазора с окнами соседних теплообменных элементов и охватываемые разделительными кольцами, причем отбортовки, центральное и периферийные кольца формируют коллекторы подвода и отвода внутреннего теплоносителя, а торцевые части теплообменника выполнены таким образом, чтобы обеспечить возможность прохождения между теплообменными элементами внешнего теплоносителя, при этом теплообменник снабжен дополнительной секцией, аналогичной по конструкции и расположенной коаксиально первой секции.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Изобретение заключается в выполнении теплообменной поверхности для интенсификации теплоотдачи при турбулентном течении теплоносителя в виде периодически нанесенных выемок, которые выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку и с оптимальной геометрической формой.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Изобретение заключается в том, что в теплообменнике (1), содержащем верхнюю пластину (2) и нижнюю пластину (3), а также множество структурированных пластин (4, 5), расположенных между верхней пластиной (2) и нижней пластиной (3), смежные структурированные пластины (4, 5) взаимодействуют друг с другом для образования каналов (10) для первичной текучей среды и каналов (11) для вторичной текучей среды между соседними структурированными пластинами (4, 5), при этом теплообменник (1) содержит по меньшей мере два набора структурированных пластин (14, 15).

Изобретение относится к области теплотехники и может быть использовано в теплообменниках с использованием кипения теплоносителя. Теплообменник, выполненный с возможностью осуществлять теплообмен за счет кипения жидкости при передаче тепла от источника тепла через теплопередающий элемент в эту жидкость, содержит на поверхности теплопередающего элемента, находящейся со стороны, приходящей в контакт с жидкостью, вызывающей ее кипение, первую теплопроводящую область и вторую теплопроводящую область, которые имеют вид чередующихся полос.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплопередающая пластина (8) теплообменника (2) содержит теплопередающую структуру гребней (36) и впадин (38), расположенных в чередующемся порядке относительно центральной плоскости (С) протяженности.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Изобретение заключается в выполнении теплообменной поверхности для интенсификации теплоотдачи при турбулентном течении теплоносителя в виде периодически нанесенных выемок, которые выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку и с оптимальной геометрической формой.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Изобретение заключается в выполнении теплообменной поверхности для интенсификации теплоотдачи при турбулентном течении теплоносителя в виде периодически нанесенных выемок, которые выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку и с оптимальной геометрической формой.

Настоящее изобретение относится к способу уменьшения скопления жидкости и замораживания в пластинчатом противоточном теплообменнике (100), содержащем пакет теплопроводящих пластин (102).

Настоящее изобретение относится к способу уменьшения скопления жидкости и замораживания в пластинчатом противоточном теплообменнике (100), содержащем пакет теплопроводящих пластин (102).

Предложены теплопередающая пластина (32) и пластинчатый теплообменник (26), содержащий такую теплопередающую пластину. Теплопередающая пластина (32) имеет первую длинную сторону (46) и вторую длинную сторону (48) и содержит распределительную область (64), переходную область (66) и теплопередающую область (54).

Предложены теплопередающая пластина (32) и пластинчатый теплообменник (26), содержащий такую теплопередающую пластину. Теплопередающая пластина (32) имеет первую длинную сторону (46) и вторую длинную сторону (48) и содержит распределительную область (64), переходную область (66) и теплопередающую область (54).

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплообменная пластина (1) образована металлической плоской пластиной, имеющей малые неровности, образованные на ее поверхности, и получена посредством штамповки, которая осуществляется в качестве последующей обработки, плоской пластины.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплообменная пластина (1) образована металлической плоской пластиной, имеющей малые неровности, образованные на ее поверхности, и получена посредством штамповки, которая осуществляется в качестве последующей обработки, плоской пластины.

Изобретение предназначено для теплообмена и может быть использовано в теплообменных аппаратах. В теплообменных элементах внутреннее пространство организовано так, что пары штампованных профильных пластин, образующих каналы для прохода потока, снабжены на обращенных поверхностях конусными или сферическими выступами, и структурировано роликовой сваркой для удлинения пути прохождения продукта по внутреннему пространству, для чего выполняют чередующиеся продольные сварные швы, организующие многоходовое движение потока и образующие извилистый канал.
Наверх