Способ определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения герметичности при одновременно-раздельной эксплуатации добывающих скважин. Способ включает установку пакера между продуктивными пластами при помощи технологических труб, которые после установки извлекают из скважины, отсоединяя от разъединителя, спуск на колонне насосно-компрессорных труб электроцентробежного насоса с коммутатором, ниппельной частью и обратным клапаном и соединение с разъединителем пакера для сообщения с подпакерным пространством, спуск вставного штангового глубинного насоса в колонну насосно-компрессорных труб до установки в коммутатор для сообщения с надпакерным пространством скважины, проверка оборудования на герметичность. Предварительно все трубы и оборудование опрессовываются на специализированных стендах с проверкой качества соединительных узлов и резьб. После установки пакера в технологической колонне создают необходимое для опрессовки давление с контролем излива жидкости из скважины и падения давления внутри с последующим отсоединением от пакера. Перед спуском ниппельной части в скважину устанавливают обратный клапан снизу, перед монтажом электроцентробежного насоса во время спуска в скважину создают внутри ниппельной части избыточное давление, контролируя излив из скважины и падение давление внутри. После установки вставного насоса в коммутатор в колонне насосно-компрессорных труб создают избыточное давление, создают необходимое для опрессовки давление с контролем излива жидкости из скважины и падения давления внутри. При допустимых параметрах герметичности во время последовательной проверки на каждом этапе делают вывод о герметичности всего скважинного оборудования. Технический результат заключается надежности и простоте определения герметичности скважинного оборудования при одновременно-раздельной эксплуатации, при возможности проведения контроля герметичности непосредственно во время установки оборудования в скважину или замены простыми и апробированными способами без привлечения специального оборудования, что гарантирует герметичность оборудования после установки и во время длительной эксплуатации. 1 ил.

 

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения герметичности при одновременно-раздельной эксплуатации добывающих скважин.

Известен способ одновременно-раздельной эксплуатации скважины многопластовых месторождений (патент RU №2380526, МПК Е21В 43/14, опубл. 27.01.2010 в Бюл. № 3), включающий спуск в скважину с несколькими пластами, по крайней мере, на одной колонне труб, без или с заглушенным нижним концом, по меньшей мере, пакеров механического, импульсного, опорного, гидравлического, гидромеханического или электрического действий, без или с разъединителем колонны труб, при этом пакеры состоят, по крайней мере, из корпуса, ствола и набора манжет, причем по меньшей мере, между двумя призабойными зонами пластов с низкими пластовыми давлениями устанавливают пакер, без или с гидравлическим якорем, выполненный с двумя наборами манжет, между которыми на стволе выполняют циркуляционные каналы и на нем размещают опорную втулку с перепускными каналами, при этом после посадки пакера между призабойными зонами пластов проверяют его герметичность, подавая жидкость между двумя наборами манжет через циркуляционные и перепускные каналы ствола и опорной втулки.

Недостатками данного способа являются узкая область применения из-за определения только герметичности посадки пакера и отсутствие проверки герметичности оборудования ни во время установки оборудования ни во время эксплуатации.

Наиболее близким по технической сущности является способ определения герметичности скважинного оборудования при одновременно-раздельной добыче жидкостей из скважины штанговым и электроцентробежным насосом (патент RU №2589016, МПК E21B 47/008, E21B 43/14, опубл. 10.07.2016 в Бюл. №19), заключающийся в том, что определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму штангового глубинного насоса, снимают параметры работы электроцентробежного насоса с телеметрической системой, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры, останавливают штанговый глубинный насос верхнего объекта, как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса производят опрессовку колонны насосно-компрессорных труб с помощью электроцентробежного насоса нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку, останавливают электроцентробежный насос и следят за показаниями работы установки по станции управления, при наличии аварийного сигнала “турбинное вращение” делают заключение о сливе жидкости из колонны насосно-компрессорных труб и о негерметичности обратного клапана электроцентробежного насоса, при идентичных темпах увеличения и падения давления на буфере скважины в различных положениях наземного привода штангового глубинного насоса и темпе падения давления в пределах не более 2 МПа за 15 минут делают заключение о герметичности коммутатора и колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины, при темпе увеличения давления на буфере скважины в верхнем положении наземного привода штангового глубинного насоса ниже и темпе падения выше, чем в нижнем положении привода штангового глубинного насоса, делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора, если в верхнем положении наземного привода штангового глубинного насоса электроцентробежный насос не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве, то делают заключение о выходе манжетного крепления штангового глубинного насоса из замковой опоры коммутатора, если как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса темп падения давления на буфере более 2 МПа за 15 минут, то делают заключение о негерметичности коммутатора и/или колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины, запускают штанговый глубинный насос и электроцентробежный насос в работу, не останавливая штангового глубинного насоса верхнего объекта, останавливают работу электроцентробежного насоса нижнего объекта, сразу после остановки электроцентробежного насоса нижнего объекта прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям телеметрической системы на табло контроллера станции управления, при стабильно повышающемся уровне жидкости делают заключение о негерметичности, а при неизменном уровне жидкости делают заключение о герметичности пакера или участка колонны насосно-компрессорных труб от электроцентробежного насоса до пакера.

Недостатками данного способа являются сложность реализации из-за необходимости проведения большого количества сложных операций, что может привести к большой вероятности ошибок, отсутствие контроля герметичности оборудования при установке его в скважину или замены, что не гарантирует герметичность оборудования после установки и во время длительной эксплуатации.

Технической задачей предполагаемого изобретения является создание способа определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации, упрощающего проведение контроля, который проводят во время установки его в скважину или замены простыми и апробированными способами без привлечения специального оборудования, что гарантирует герметичность оборудования после установки и во время длительной эксплуатации.

Техническая задача решается способом определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации, включающий установку пакера между продуктивными пластами при помощи технологических труб, которые после установки извлекают из скважины, отсоединяя от разъединителя, спуск на колонне насосно-компрессорных труб электроцентробежного насоса с коммутатором, ниппельной частью и обратным клапаном и соединение с разъединителем пакера для сообщения с подпакерным пространством, спуск вставного штангового глубинного насоса в колонну насосно-компрессорных труб до установки в коммутатор для сообщения с надпакерным пространством скважины, проверка оборудования на герметичность.

Новым является то, что предварительно все трубы и оборудование опрессовываются на специализированных стендах с проверкой качества соединительных узлов и резьб, после установки пакера в технологической колонне создают необходимое для опрессовки давление с контролем излива жидкости из скважины и падения давления внутри с последующим отсоединением от пакера, перед спуском ниппельной части в скважину устанавливают обратный клапан снизу, перед монтажом электроцентробежного насоса во время спуска в скважину создают внутри ниппельной части избыточное давление, контролируя излив из скважины и падение давление внутри, а после установки вставного насоса в коммутатор в колонне насосно-компрессорных труб создают избыточное давление создают необходимое для опрессовки давление с контролем излива жидкости из скважины и падения давления внутри, при допустимых параметрах герметичности во время последовательной проверки на каждом этапе делают вывод о герметичности всего скважинного оборудования.

На чертеже изображена схема реализации способа.

Конструктивные элементы и технологические соединения, не влияющие на работоспособность способа, на чертеже не показаны или показаны условно.

Способ определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации включает предварительную опрессовку в промышленных условиях всех труб и оборудования на специализированных стендах с проверкой качества соединительных узлов и резьб. После доставки оборудования на скважину 1 в нее спускают на технологических трубах (не показаны) пакер 2, который устанавливают между верхним 3 и нижним 4 продуктивными пластами. Затем в технологической колонне создают необходимое для опрессовки пакера 2 давление с контролем излива жидкости из скважины и падения давления внутри. В случае отсутствия излива жидкости из скважины снаружи технологической колонны и падения давления с допустимой скоростью (определяют эмпирическим путем) производят отсоединение этой колонны от разъединителя 5 пакера 2. Технологическую колонну после этого извлекают на поверхность. Ниппельную часть 6 снабжают снизу клапаном 7 и спускают в скважину 1. Перед монтажом электроцентробежного насоса (ЭЦН) 8 создают внутри ниппельной части 6, благодаря наличию клапана 7, избыточное давление, контролируя излив из скважины 1 и падение давление внутри. В случае отсутствия излива жидкости из скважины снаружи ниппельной части 6 и падения давления с допустимой скоростью (определяют эмпирическим путем) присоединяют к ниппельной части 6 последовательно во время спуска в скважину 1 ЭЦН 8, технологический патрубок 9, коммутатор 10 и колонны насосно-компрессорных труб (НКТ) 11, на которой производят спуск с кабелем 12 ЭЦН 8 до герметичного соединения ниппельной части 6 с разъединителем 5 для сообщения ЭЦН 8 с подпакерным пространством 13 скважины 1. Производят далее спуск вставного штангового глубинного насоса (ШГН) 14 на штангах 15 (могут быть выполнены цельными или полыми) в колонну НКТ 11 до герметичной установки ШГН 14 в коммутатор 10 для сообщения с надпакерным пространством 16 скважины 1 при помощи каналов 17 коммутатора 10. Для опрессовки в колонне НКТ 11 создают избыточное давление е с контролем излива жидкости из скважины 1 и падения давления внутри. В случае отсутствия излива жидкости из скважины снаружи колонны НКТ 11 и падения давления с допустимой скоростью (определяют эмпирическим путем) после герметизации устья (не показано) скважины 1 для запуска в эксплуатацию (в работу) ЭЦН 8 кабелем 12 присоединяют электрическому блоку управления (БУ - не показан), а штанги 15 ШГН 14 - к устьевому приводу (станок-качалка, цепной привод, гидравлический привод или т.п. - не показан). Для увеличения срока работы ЭЦН 8 пакер 2 снизу могут оснащать фильтром 18. После запуска в работу ЭЦН 8 и ШГН 14 продукция нижнего пласта 4 поступает в подпакерное пространство 13, откуда через фильтр 18 и ниппельную часть 6 при помощи ЭЦН 8 перекачивают в технологический патрубок 9 и через колонну НКТ 11 поднимается на поверхность, а продукция верхнего пласта 3 поступает в надпакерное пространство 18 откуда через каналы 17 коммутатора 10 при помощи ШГН 14 перекачивают на поверхность по колонне НКТ 11 или по полости штанг 15.

Так как во время спуска скважинного оборудования в скважину 1 производят опрессовку (проверку на герметичность) всех конструктивных элементов еще до запуска в работу - это гарантирует герметичность их после установки в скважине и во время длительной эксплуатации. Причем все работы по проверке на герметичность ведутся простыми и апробированными способами без привлечения специального оборудования (достаточно манометра и визуального наблюдения) - это значительно упрощает, ускоряет и, как следствие, удешевляет эти работы.

Предлагаемый способ определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации прост, надежен и дешев, так как позволяет проводить контроль герметичности непосредственно во время установки оборудования в скважину или замены простыми и апробированными способами без привлечения специального оборудования, что гарантирует герметичность оборудования после установки и во время длительной эксплуатации.

Способ определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации, включающий установку пакера между продуктивными пластами при помощи технологических труб, которые после установки извлекают из скважины, отсоединяя от разъединителя, спуск на колонне насосно-компрессорных труб электроцентробежного насоса с коммутатором, ниппельной частью и обратным клапаном и соединение с разъединителем пакера для сообщения с подпакерным пространством, спуск вставного штангового глубинного насоса в колонну насосно-компрессорных труб до установки в коммутатор для сообщения с надпакерным пространством скважины, проверка оборудования на герметичность, отличающийся тем, что предварительно все трубы и оборудование опрессовываются на специализированных стендах с проверкой качества соединительных узлов и резьб, после установки пакера в технологической колонне создают необходимое для опрессовки давление с контролем излива жидкости из скважины и падения давления внутри с последующим отсоединением от пакера, перед спуском ниппельной части в скважину устанавливают обратный клапан снизу, перед монтажом электроцентробежного насоса во время спуска в скважину создают внутри ниппельной части избыточное давление, контролируя излив из скважины и падение давление внутри, а после установки вставного насоса в коммутатор в колонне насосно-компрессорных труб создают избыточное давление, создают необходимое для опрессовки давление с контролем излива жидкости из скважины и падения давления внутри, при допустимых параметрах герметичности во время последовательной проверки на каждом этапе делают вывод о герметичности всего скважинного оборудования.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано при одновременно раздельной эксплуатации двух пластов скважины. Установка для одновременно раздельной эксплуатации двух пластов скважины включает устьевой привод, длинную колонну лифтовых труб, основной штанговый насос, пакер, разделяющий верхний и нижний пласты, дополнительные станок-качалку и короткую колонну лифтовых труб, установленную выше верхнего продуктивного пласта, и параллельный якорь, установленный на обеих колоннах лифтовых труб и выше верхнего продуктивного пласта.

Изобретение относится к области горного дела, в частности к нефтедобывающей промышленности, и может быть использовано для закачки жидкости в верхний нефтеносный пласт из нижнего пласта скважины, особенно с повышенным содержанием сопутствующего газа.

Группа изобретений относится к области строительства скважин для добычи углеводородов. Технический результат - повышение эффективности строительства скважин и надежности работы устройства.

Изобретение относится к нефтедобывающей отрасли и может найти применение на новых и уже эксплуатируемых, наклонных и горизонтальных, автономных, шельфовых, не обустроенных скважинах и месторождениях.

Изобретение относится к нефтегазодобывающей отрасли и может использоваться для одновременно-раздельной добычи нефти из двух продуктивных пластов одной скважиной.

Изобретение относится к технике нефтепромыслового оборудования и может быть использовано с установками электрических центробежных насосов (УЭЦН) для одновременно-раздельной эксплуатации газовых, газоконденсатных и нефтяных скважин.

Изобретение относится к нефтегазовой промышленности и может быть применено для одновременно-раздельной эксплуатации продуктивных пластов насосными установками. Способ включает разработку двух продуктивных пластов одной скважиной по технологической схеме «ЭЦН-СШН».

Изобретение относится к нефтедобывающей отрасли и может быть применено для подъема пластовой жидкости на поверхность. Погружная установка для подъема пластовой жидкости содержит хвостовик, оборудованный пакером, колонну насосно-компрессорных труб с установленными на ней последовательно сверху вниз сливным клапаном, обратным клапаном и электрический кабель, закрепленный на колонне насосно-компрессорных труб при помощи зажимов.

Изобретение относится к добыче нефти и может быть применено для одновременно-раздельной добычи нефти одной восстановленной скважиной с пробуренными наклонно-направленными забоями.

Группа изобретений относится к горному делу и может быть применена для добычи нефти из глубоко расположенных пластов. Установка в первом варианте содержит колонну лифтовых труб, двухсторонний погружной электродвигатель (ПЭД), снабженный системой телеметрии, с центробежными насосами (ЦН), силовой кабель питания ПЭД, забойный пакер, разобщающий верхний и нижний нефтеносные пласты, соединенный с хвостовиком, оснащенным фильтром, для извлечения жидкости из нижнего пласта, опорный пакер с кабельным вводом, образующие межпакерную полость, и блок регулирования потоков и учета извлекаемых жидкостей (БРПУ), содержащий датчики контроля параметров пластовых жидкостей и регулируемые электроприводные клапаны (РЭК), установленные в обособленных каналах и связанные кабелем связи телемеханической системы с контрольно-измерительными приборами на панели станции управления.

Изобретение относится к нефтяной промышленности, а именно к насосным установкам для одновременно-раздельной эксплуатации двух пластов скважины. Насосная установка содержит колонну лифтовых труб, кабель, верхний ЭЦН, верхний входной модуль, нижний насосный агрегат, включающий нижний ЭЦН, нижний входной модуль, гидрозащиту и электродвигатель, и пакер между верхним входным модулем и нижним ЭЦН, разделяющий верхний и нижний пласты. На верхнем ЭЦН установлен с образованием верхнего кольцевого зазора кожух. В верхнем входном модуле дополнительно выполнены проточные каналы. Пакер выполнен с центральным отверстием, в котором с образованием нижнего кольцевого зазора проходит вал, передающий вращение от нижнего ЭЦН через верхний входной модуль верхнему ЭЦН. Верхний кольцевой зазор, проточные каналы и нижний кольцевой зазор образуют гидравлическую линию, сообщающую выход нижнего насосного агрегата с колонной лифтовых труб. Технический результат - снижение металлоемкости и уменьшение длины насосной установки, упрощение ее монтажа на скважине. 1 ил.
Наверх