Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур



Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
B33Y30/00 -
B33Y30/00 -
B22F2003/1057 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2722961:

федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" (RU)

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами. Выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6. Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами. Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации. Над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц. Обеспечивается упрощение получения оптимального размера наночастиц в автоматическом режиме для их спекания на подложке. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к аддитивной 3D-технологии для производства преимущественно объемных микроразмерных структур из наночастиц.

Известно устройство для получения частиц при аддитивном изготовлении объемных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, содержащий устройство нагрева потока транспортного газа с частицами, при этом вход блока оптимизации сообщен с блоком получения потока аэрозоля с частицами [1].

Однако данное устройство не позволяет получать наночастицы сферической формы нужного диаметра для эффективного спекания на подложке при аддитивном изготовлении объемных микроразмерных структур.

Известно устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, блок оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом вход блока оптимизации сообщен с блоком получения потока аэрозоля с наночастицами, а выход - с печатающей головкой [2].

Однако при применении указанного технического решения возникают трудности в изменении температуры при нагреве аэрозоля с наночастицами в потоке транспортного газа для получения наночастиц сферической формы требуемого размера, так как применяемые нагревательные элементы являются инерционными и требуется сравнительно большой промежуток времени, например, для уменьшения температуры нагрева. При применении данного устройства приходится вручную поддерживать оптимальный режим получения наночастиц сферической формы нужного размера.

Результат, для достижения которого направлено данное техническое решение, заключается в упрощении получения наночастиц оптимального размера и сферической формы для их спекания в автоматическом режиме.

Указанный результат достигается за счет того, что в устройстве для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащем сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, блок оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом выход блока получения потока аэрозоля сообщен с блоком оптимизации, выход которого соединен с печатающей головкой, его блок оптимизации наночастиц выполнен в виде рабочей камеры с входным и выходным оптически прозрачными окнами, причем устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства с регулятором мощности и установлено перед входным окном блока оптимизации, над и под оптически прозрачными окнами блока оптимизации наночастиц установлены измерители мощности лазерного излучения соответственно до и после оптимизации, а на входе и выходе потока транспортного газа с наночастицами блока оптимизации - анализаторы размеров наночастиц до и после оптимизации.

Указанный результат достигается также за счет того, что устройство снабжено блоком управления процессом оптимизации, входы которого подключены к измерителям мощности лазерного излучения и анализаторам размеров наночастиц до и после оптимизации, а выходы соответственно с регуляторами потока транспортного газа и мощности лазерно-оптического устройства.

Пример выполнения заявляемого технического решения поясняется чертежами, где на фиг. 1 представлено заявляемое устройство, на фиг. 2, 3 - гистограмма распределения наночастиц до и после их оптимизации в блоке оптимизации.

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6.

Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами.

Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации, над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения соответственно до и после оптимизации, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц до и после оптимизации.

Устройство получения наночастиц снабжено также блоком 17 управления процессом оптимизации, входы 18-21 которого подключены к измерителям 11, 12 мощности лазерного излучения и анализаторам 15, 16 размеров наночастиц до и после оптимизации, а выходы 22, 23 соответственно с регуляторами 24, 10 потока транспортного газа и мощности лазерно-оптического устройства.

Работа устройства поясняется примером получения наночастиц требуемого размера для их спекания на подложке при аддитивном изготовлении объемных микроразмерных структур в автоматическом режиме. Управление размером наночастиц осуществляют на основании гистограммы распределения частиц по размерам путем подстройки параметров транспортного газа и лазерно-оптического устройства с использованием обратной связи в виде измерителей мощности лазерного излучения и анализаторов размеров наночастиц до и после оптимизации (фиг. 2, 3). Для подстройки параметров системы используют в качестве управляющих величин получаемые при анализе гистограммы распределения частиц по размерам, используя их медианное значение и изменение медианного размера наночастиц до и после их оптимизации.

Таким образом данное техническое решение позволит упростить получение оптимального размера наночастиц в автоматическом режиме для их спекания на подложке при аддитивном изготовлении объемных микроразмерных структур.

Источники информации

1. Патент US №10022789, МПК - B22D 23/00, 07.2018

2. Патент RU №2704358, МПК - B22F 3/105, 2018

1. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля наночастиц, блок оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами, при этом выход блока получения потока аэрозоля сообщен с блоком оптимизации, выход которого соединен с печатающей головкой для аддитивного изготовления объемных микроразмерных структур, отличающееся тем, что блок оптимизации наночастиц выполнен в виде рабочей камеры с входным и выходным оптически прозрачными окнами, причем устройство для нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства с регулятором мощности и установлено перед входным окном блока оптимизации, над и под оптически прозрачными окнами блока оптимизации наночастиц установлены измерители мощности лазерного излучения соответственно до и после оптимизации, а на входе и выходе потока транспортного газа с наночастицами блока оптимизации - анализаторы размеров наночастиц до и после оптимизации.

2. Устройство по п. 1, отличающееся тем, что оно снабжено блоком управления процессом оптимизации, входы которого подключены к измерителям мощности лазерного излучения и анализаторам размеров наночастиц до и после оптимизации, а выходы соответственно с регуляторами потока транспортного газа и мощности лазерно-оптического устройства.



 

Похожие патенты:

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал.

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4 водным раствором фторида аммония NH4F исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, при этом водный раствор фторида аммония NH4F используют концентрацией, равной 40%.

Изобретение относится к нефтедобывающей промышленности. Технический результат - снижение скин-фактора, повышение эффективности обработки и производительности нефтегазовых скважин, устранение коррозионного воздействия на элементы нефтегазодобывающего и перерабатывающего оборудования и химического загрязнения извлекаемого пластового флюида.

Изобретение относится к технологии получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с катионами редкоземельных элементов.

Изобретение относится к химической промышленности и фармацевтике и может быть использовано при изготовлении средств ускоренной доставки твёрдого вещества, лакокрасочных и смазочных материалов, а также при очистке воздуха от взвешенных частиц.
Изобретение может быть использовано в электронике, медицине, фармакологии и строительстве. Сначала готовят смесь серной кислоты с сухим льдом в достаточном для отвердевания смеси количестве и смесь по меньшей мере одного окислителя, например калия перманганата, с сухим льдом, при этом по меньшей мере одна из указанных смесей содержит измельченный графит.

Изобретение может быть использовано при получении модифицированных пластичных смазок, эпоксидных смол, бетонов. Сначала готовят смесь кристаллического графита с жидкостью и подают её в устройство для получения графенсодержащей суспензии сдвиговой эксфолиацией частиц графита поле центробежных сил, возникающее между цилиндрическим статором 1 и вращающимся от привода вращения 3 ротором 2 с радиальными лопастями 4.

Изобретение может быть использовано при получении углеводородного топлива. Катализатор деоксигенирования компонентов биомассы в углеводороды содержит носитель и соединения никеля в качестве активного компонента.

Изобретение относится к металлическому композиционному материалу для скользящего контакта переключателя электропитания. Металлографеновый композиционный продукт в виде скользящего контакта, в котором чешуйки графена диспергированы в матрице металла, представляющего собой Ag, Al, Au, Pt, In, Sn или Cu, или их сочетание.

Изобретение относится к области мембранных технологий и может быть использовано для селективного выделения паров воды в процессе осушения газовых смесей. Описывается композиционная мембрана для осушения газовых смесей, включающая микропористый полимер, заключенный в порах жесткой пористой матрицы.

Изобретение относится к металлургии, к области производства сферических порошков из металлов и сплавов, предназначенных для дальнейшей переработки методами аддитивных технологий или горячего изостатического прессования в готовые изделия.

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами. Выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6. Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами. Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации. Над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц. Обеспечивается упрощение получения оптимального размера наночастиц в автоматическом режиме для их спекания на подложке. 1 з.п. ф-лы, 3 ил.

Наверх