Комплекс для испытаний технических средств на устойчивость к воздействию электромагнитного поля

Изобретение относится к области радиотехники и может быть использовано при испытании технических средств на устойчивость к воздействию электромагнитного поля. Комплекс для испытаний технических средств на устойчивость к воздействию электромагнитного поля включает в себя последовательно соединенные систему управления, генератор сигналов, усилитель мощности, ТЕМ-камеру, аттенюатор, измерительный преобразователь и измеритель мощности, выход которого соединен с входом информационной системы. ТЕМ-камера включает в себя отрезок полосковой линии, содержащий параллельно расположенные два внешних проводника и центральный проводник. На концах отрезка полосковой линии выполнены согласующие переходы, соединенные с коаксиальными разъемами, являющимися входом и выходом ТЕМ-камеры. Между центральным проводником и одним из внешних проводников, параллельно им, расположена проводящая пластина, электрически соединенная с ближайшим внешним проводником. Технический результат – уменьшение энергопотребления комплекса, упрощение конструкции комплекса. 4 ил.

 

Изобретение относится к области радиотехники и может быть использовано при испытании технических средств на устойчивость к воздействию электромагнитного поля.

Известен (Подлипнов Г.А., Саржин М.А., Сухов В.В., статья «Комплекс для испытаний технических средств на устойчивость к внешнему электромагнитному полю в ТЕМ-камерах», Актуальные проблемы радиоэлектроники, серия «Вестник СГАУ», 84-89, Самара, 2004) комплекс для испытаний на устойчивость технических средств к воздействию электромагнитного поля, включающий в себя систему управления, генератор сигналов, усилитель мощности и ТЕМ-камеру. ТЕМ-камера включает в себя отрезок полосковой линии, содержащий параллельно расположенные два внешних проводника и центральный проводник. Для согласования отрезка полосковой линии с коаксиальными разъемами на его концах выполнены согласующие участки. Для контроля испытательного электромагнитного поля в области испытаний расположен датчик, передача данных от которого к измерителю осуществляется по оптоволоконной линии.

Известный комплекс принят в качестве ближайшего аналога к заявленному комплексу.

Основными недостатками известного комплекса является сложность, обусловленная использованием датчика, расположенного в ТЕМ-камере (и соответствующей ему системе передачи данных), предназначенного для контроля испытательного электромагнитного поля в области испытаний и необходимость использования мощных усилителей для создания испытательного поля с характеристиками, достаточными для проведения испытаний (обусловленная геометрией ТЕМ-камеры).

Технической проблемой, решаемой настоящим изобретением, является создание комплекса для испытаний технических средств на устойчивость к воздействию электромагнитного поля, лишенного указанных недостатков.

В результате достигается технический результат, заключающийся в уменьшении энергопотребления комплекса в результате обеспечения возможности создания испытательного поля с характеристиками, достаточными для проведения испытаний без использования мощных усилителей, и упрощении конструкции комплекса.

Указанный технический результат достигается созданием комплекса для испытаний технических средств на устойчивость к воздействию электромагнитного поля, включающего в себя последовательно соединенные систему управления, генератор сигналов, усилитель мощности, ТЕМ-камеру, аттенюатор, измерительный преобразователь и измеритель мощности, выход которого соединен с входом информационной системы. ТЕМ-камера включает в себя отрезок полосковой линии, содержащий параллельно расположенные два внешних проводника и центральный проводник. На концах отрезка полосковой линии выполнены согласующие переходы, соединенные с коаксиальными разъемами, являющимися входом и выходом ТЕМ-камеры. Между центральным проводником и одним из внешних проводников, параллельно им, расположена проводящая пластина, электрически соединенная с ближайшим внешним проводником.

На фиг. 1 представлено схематичное изображение заявленного комплекса для проведения испытаний технических средств на устойчивость к воздействию электромагнитного поля.

На фиг. 2 представлено схематичное изображение сечения А-А ТЕМ-камеры.

На фиг. 3 представлена фотография заявленного комплекса для проведения испытаний технических средств на устойчивость к воздействию электромагнитного поля.

На фиг. 4 представлена зависимость КСВн (коэффициента стоячей волны по напряжению) ТЕМ-камеры согласно ближайшему аналогу и ТЕМ-камеры, входящей в состав заявленного комплекса.

Комплекс для испытаний технических средств на устойчивость к воздействию электромагнитного поля, изображенный на фигурах 1-3, включает в себя систему управления 1, выход которой соединен с управляющим входом генератора сигналов 2. Сигнальный выход генератора сигналов 2 соединен с входом усилителя мощности 3, выход которого соединен с входом ТЕМ-камеры 4, представляющим собой коаксиальный разъем (на фигурах не показан). Выход ТЕМ-камеры, представляющий собой коаксиальный разъем (на фигурах не показан) соединен с входом аттенюатора 5, выход которого соединен с входом измерительного преобразователя 6, выход которого соединен с входом измерителя мощности 7. Выход измерителя мощности 7 соединен посредством, например, оптоволоконной линии связи с входом системы управления 1.

Усилитель мощности 3, ТЕМ-камера 4, аттенюатор 5, измерительный преобразователь 6 и измеритель мощности 7 расположены в экранированном помещении 8. Система управления 1 и генератор сигналов 2 расположены в аппаратной 9.

ТЕМ-камера 4 включает в себя отрезок полосковой линии, который содержит параллельно расположенные два внешних проводника 10а и 10б и центральный проводник 10в, имеющих плоскую форму. На концах отрезка полосковой линии выполнены согласующие переходы 11а и 11б, соединенные с коаксиальными разъемами (на фигурах не показаны), являющимися входом и выходом ТЕМ-камеры. Между центральным проводником 10в и одним из внешних проводников (на фигуре 1 это 10б) параллельно им расположена проводящая пластина 12, электрически соединенная с ним. Конструктивное и электрическое соединение проводящей пластины 12 с ближайшим внешним проводником 10б может быть выполнено, например, с помощью двух проводящих пластин прямоугольной формы 13а и 13б, расположенных перпендикулярно проводящей пластине 12 и ближайшему внешнему проводнику 10б (и конструктивно и электрически соединенными с ними с помощью, например, сварки или пайки) и параллельно продольной оси симметрии центрального проводника 10в.

Испытания технических средств на устойчивость к воздействию электромагнитного поля проводят следующим образом. В начале испытаний производят калибровку испытательного поля в рабочей зоне ТЕМ-камеры 4. В отличие от технического решения по ближайшему аналогу, калибровку и последующую установку в заданном диапазоне частот уровня напряженности электрического поля в рабочей зоне ТЕМ-камеры производят не с помощью дополнительного датчика, установленного в ней, а по результатам измерения мощности на выходе ТЕМ-камеры 4 (измеряемой с помощью измерителя мощности 7).

Напряженность поля в рабочей зоне ТЕМ-камеры (выполненной в виде отрезка полосковой линии (в отсутствие проводящей пластины 12) связана с ее волновым сопротивлением Z0, мощностью внутри линии Р и ее геометрическим (Н) параметром соотношением (исходя из выражения для мощности внутри отрезка полосковой линии, являющейся частью ТЕМ-камеры):

где: Р - мощность внутри ТЕМ-камеры, Вт;

Z0 - волновое сопротивление ТЕМ-камеры;

H - расстояние между центральным проводником 10в и внешней пластиной 10а и 10б, (смотри фигуру 2), м;

С учетом того, что потери в ТЕМ-камере незначительны, то в формуле (1) можно положить, что Р=Рвых. В этом случае напряженность поля в ТЕМ-камере в рабочей зоне будет равна

В присутствии проводящей пластины 12 формулу (2) можно переписать в виде

где h - расстояние между центральным проводником 10в и проводящей пластиной 12, (смотри фигуру 2), м;

Таким образом, измеряя с помощью измерителя мощности 7 и учитывая затухание α, вносимое аттенюатором 5, можно определить величину испытательного поля Е в рабочей зоне в ТЕМ-камере.

Из формул (2) и (3) следует, что поле в присутствии проводящей пластины 12 (в области между центральным проводником 10в и проводящей пластиной 12) в N=H/h раз больше, чем поле в области без проводящей пластины (на фигуре 2 это область между центральным проводником 10в и внешней пластиной 10а). Это позволяет при заданном уровне мощности на входе ТЕМ-камеры 4 (обеспечиваемой усилителем мощности 3) увеличить напряженность электрического поля в рабочей зоне ТЕМ-камеры (в области между центральным проводником 10в и проводящей пластиной 12).

Область, ограниченная проводящей пластиной 12 и ближайшим внешним проводником 10б может также использоваться для размещения оборудования, связанного с испытуемым техническим средством (например, средства контроля функционирования испытуемого технического средства), воздействие электромагнитного поля на которые не желательно. Поле в этой области практически отсутствует ввиду того, что проводящая пластина 12 и ближайший внешний проводник электрически соединены друг с другом, что обеспечивает равенство потенциалов на них и, соответственно, отсутствие электромагнитного поля между ними.

При этом КСВн ТЕМ-камеры с проводящей пластиной 12 (например, в варианте ее конструктивного и электрического соединения с ближайшим внешним проводником 10б с помощью двух проводящих пластин прямоугольной формы 13а и 13б, расположенных перпендикулярно проводящей пластине 12 и ближайшему внешнему проводнику 10б) изменяется в диапазоне 0,01-80 МГц незначительно. Это объясняется тем, что проводящая пластина 12 перпендикулярна вектору напряженности электрического поля и не вызывает его отражения. Отражение вызывает только торцевая часть двух проводящих пластин прямоугольной формы 13а и 13б. В качестве примера на фигуре 4 приведены экспериментальные данные измерения КСВн ТЕМ-камеры с установленной проводящей пластиной и без нее.

После завершения процесса калибровки размещают в рабочей зоне ТЕМ-камеры 4 (в область между проводящей пластиной 12 и дальним внешним проводником 10а) испытуемое техническое средство (не показано). К нему подключают средства контроля его функционирования (не показаны), которые (например, с помощью оптоволоконной линии связи) подсоединяют к системе управления 1.

Проводят испытания в необходимых диапазонах частот и интенсивностей испытательного поля и обрабатывают информацию со средств контроля функционирования испытуемых технических средств посредством системы управления 1.

Комплекс для испытаний технических средств на устойчивость к воздействию электромагнитного поля, включающий в себя последовательно соединенные систему управления, генератор сигналов, усилитель мощности, ТЕМ-камеру, аттенюатор, измерительный преобразователь и измеритель мощности, выход которого соединен с входом информационной системы, ТЕМ-камера включает в себя отрезок полосковой линии, содержащий параллельно расположенные два внешних проводника и центральный проводник, на концах отрезка полосковой линии выполнены согласующие переходы, соединенные с коаксиальными разъемами, являющимися входом и выходом ТЕМ-камеры, между центральным проводником и одним из внешних проводников, параллельно им, расположена проводящая пластина, электрически соединенная с ближайшим внешним проводником.



 

Похожие патенты:

Изобретение относится к робототехническим комплексам и области радиоизмерений, обеспечивающих высокоточное позиционирование технологического средства по четырем координатам в пространстве.

Изобретение относится к радиотехническим системам определения координат источника радиоизлучений (ИРИ) и может быть использовано в системах радиомониторинга при решении задач скрытого определения координат источников радиоизлучений, в частности для определения координат с транспортного средства, а также в навигационных средствах.

Изобретение относится к электротехнике и может найти применение для эксплуатационного контроля высоковольтных ограничителей перенапряжения нелинейных (ОПН), выполненных на основе варисторов, применяемых в системах защиты электрических сетей от грозовых и коммутационных импульсов перенапряжения.
Изобретение относится к области технической защиты информации в различных сферах деятельности. Техническим результатом является исключение утечки защищаемой информации по каналам побочных электромагнитных излучений и наводок, образованных средством вычислительной техники объекта информатизации через средства мобильной связи и закладочные устройства.

Изобретение относится к области радиотехнических измерений. Способ определения коэффициента дополнительного затухания сигналов в канале радиосвязи с летательным аппаратом заключается в том, что посредством передающего устройства, расположенного на летательном аппарате, через передающую антенну излучают сигналы на заданной частоте, в стороннем приемном устройстве с помощью приемной антенны регистрируют времена прихода сигналов, на основании которых строят временную диаграмму приема сигналов, далее из временной диаграммы приема определяют моменты времени, соответствующие началу или окончанию приема сигналов, для данных моментов времени рассчитывают мощность сигналов на входе приемного устройства без учета дополнительного затухания сигналов, включающего уменьшение мощности сигналов вследствие прохождения через плазменную оболочку, образующуюся у раскрыва антенны летательного аппарата, и уменьшение мощности сигналов вследствие уменьшения коэффициента усиления антенны летательного аппарата, при этом фактическую мощность сигналов на входе приемного устройства в моменты времени, соответствующие началу или окончанию приема сигналов, принимают равной чувствительности приемного устройства, далее определяют коэффициент дополнительного затухания сигналов, равный отношению рассчитанной мощности к фактической.

Изобретение относится к технике радиофизических измерений и может быть использовано для измерения в миллиметровом участке спектра собственного теплового излучения разнообразных быстропротекающих газодинамических процессов, развивающихся в радиопрозрачных объектах.

Изобретение относится к области антенной техники и может быть использовано при определении мест размещения двух антенн на одном носителе. Сущность: определяют место размещения первой антенны в зоне излучения второй антенны исходя из функциональных характеристик первой антенны, выбирают метаматериал и геометрию для изготовления первой антенны, представляющей собой полосно-пропускающий фильтр, со свойством радиопрозрачности в рабочем диапазоне частот второй антенны, рассчитывают геометрию первой антенны с учетом возможности достижения максимальной радиопрозрачности в диапазоне второй антенны, принимая во внимание характеристики выбранного метаматериала, изготавливают первую антенну.

Изобретение относится к области радиотехники, в частности, для испытаний радио- и радиоэлектронного бортового оборудования (БРЭО) на электромагнитную совместимость (ЭМС).

Изобретение относится к вакуумной микроэлектронике СВЧ, а именно к измерению характеристик пленочных локальных поглотителей энергии СВЧ на опорных диэлектрических стержнях усилительного прибора СВЧ.

Изобретение относится к области измерительной техники и может быть использовано для измерения электрических зарядов обоих знаков, включая высоковольтные заряды статического электричества, образующиеся в потоках движущихся диэлектрических жидкостей, например светлых нефтепродуктов.

Изобретение относится к геофизике и применяется при исследовании скважин с целью определения нарушенных и трещиноватых зон. Сущность: устройство представляет собой приемник электромагнитных сигналов, работающий по принципу прямого усиления, и содержит ферритовую антенну 1, восемь конденсаторов (10-17) и восемь резисторов (2-9) разной величины, первый коммутатор 18 конденсаторов, усилитель 20, полосовой фильтр 21, выпрямитель 22, аналого-цифровой преобразователь 23, выходной блок 25, блок управления 26 и второй аналоговый коммутатор 19.
Наверх