Способ получения модифицированного активного угля

Изобретение относится к способу получения модифицированного активного угля, который может быть использован для водоочистки технологических стоков предприятий химической и фармацевтической промышленности. Способ включает промывание промышленного активного угля дистиллированной водой, обработку раствором перманганата калия с массовой долей растворенного вещества 10% при отношении массы угля (г) к объему раствора перманганата калия (см3) - 1:10 в течение 4 часов, обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, и прогрев при температуре 200°С в течение 1 часа на воздухе. Изобретение обеспечивает повышение сорбционной емкости активного угля по диметиламину. 4 табл., 4 пр.

 

Изобретение относится к области адсорбционной техники и может быть использовано для получения модифицированных активных углей (МАУ), применяемых для водоочистки технологических стоков предприятий химической и фармацевтической промышленности.

Известен способ получения МАУ, включающий пропитку углей водой или раствором соляной кислоты с концентрацией 1-4 вес. % при соотношении суммарного объема пор угля и воды или кислоты 1,0 - (0.7-1,0), а затем обработку угля 9÷15% раствором термоактивной смолы в фурфуроле при весовом соотношении угля и раствора 1,0 - (0,35-0,68), выдерживание до сыпучести и термообработку со скоростью подъема температуры 450-900 град/час до 700-900°C с последующей выдержкой при этой температуре в течение 0,2-0,5 ч (патент РФ №2175885).

Недостатком данного способа является использование сложного по составу модифицирующего реагента, а также длительность и трудоемкость процесса модифицирования.

Наиболее близким является способ получения МАУ, включающий обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) -1:10 в течение 24 часов и дальнейший прогрев при температуре 100°С в течение 1 часа на воздухе, отличающийся тем, что АУ обрабатывают раствором перекиси водорода с массовой долей растворенного вещества 3% при отношении массы угля (г) к объему раствора перекиси водорода (см3) - 1:10. (патент РФ №2696447).

Недостатком данного способа модифицирования является значительный расход реагентов, тепла и электричества, а также взрывоопасные свойства перекиси водорода.

Задачей настоящего изобретения является повышение сорбционной емкости активных углей по диметиламину, снижение расхода электроэнергии, реагентов, увеличение расхода сточных вод, исключение взрывоопасных реагентов.

Поставленная задача достигается промыванием промышленного активного угля (АУ) дистиллированной водой, дальнейшей обработкой раствором перманганата калия с массовой долей растворенного вещества 10% при отношении массы угля (г) к объему раствора перманганата калия (см3) - 1:10 в течение 4 часов и малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) -1:100 в течение 24 часов, а также дальнейшим прогревом при температуре 200°С на воздухе в течение 1 часа.

В качестве сравнения использовали промышленный активный уголь марки АГ-5.

Пример 1.

АУ промыли дистиллированной водой, затем обработали раствором перманганата калия с массовой долей растворенного вещества 10% при отношении массы угля (г) к объему раствора перманганата калия (см3) -1:10 в течение 4 часов и малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а также прогрели при температуре 200°С в течение 30 минут, 1, 2, 3 часа на воздухе.

Далее на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметиламина с концентрацией 2 моль/дм3. Полученные данные представлены в таблице 1.

Пример 2.

АУ промыли дистиллированной водой, затем обработали раствором перманганата калия с массовой долей растворенного вещества 10% при отношении массы угля (г) к объему раствора перманганата калия (см3) -1:10 в течение 4 часов и малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а также прогрели в интервале температур: 50, 100, 200, 300°С в течение 1 часа на воздухе.

Далее на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметиламина с концентрацией 2 моль/дм3. Полученные данные представлены в таблице 2.

Пример 3.

АУ промыли дистиллированной водой, затем обработали раствором перманганата калия с массовой долей растворенного вещества: 0-холостой опыт, 5, 10, 15, 20, 30% при отношении массы угля (г) к объему раствора перманганата калия (см3) - 1:10 в течение 4 часов и малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) -1:100 в течение 24 часов, а также прогрели при температуре 200°С в течение 1 часа на воздухе.

Затем на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметиламина с концентрацией 2 моль/дм3. Полученные данные представлены в таблице 3.

Пример 4.

АУ промыли дистиллированной водой, затем обработали раствором перманганата калия с массовой долей растворенного вещества 10% при отношении массы угля (г) к объему раствора перманганата калия (см3) - 1:10 в течение 30 минут 1, 2, 3, 4, 5, 10 часов и малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а также прогрели при температуре 200°С в течение 1 часа на воздухе.

Затем на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметиламина с концентрацией 2 моль/дм3. Полученные данные представлены в таблице 4.

В результате проведенных исследований были выбраны следующие условия модифицирования: промывание промышленного активного угля (АУ) дистиллированной водой, обработка раствором перманганата калия с массовой долей растворенного вещества 10%, при отношении массы угля (г) к объему раствора перекиси водорода (см3) - 1:10 в течение 4 часов и малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) -1:100 в течение 24 часов, а также прогрев при температуре 200°С в течение 1 часа на воздухе. Извлечение диметиламина полученными сорбентами возрастает на 65,3%.

Способ получения модифицированного активного угля, включающий промывание промышленного активного угля (АУ) дистиллированной водой, обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, и дальнейший прогрев при температуре 200°С в течение 1 часа на воздухе, отличающийся тем, что АУ обрабатывают раствором перманганата калия с массовой долей растворенного вещества 10% при отношении массы угля (г) к объему раствора перманганата калия (см3) - 1:10 в течение 4 часов.



 

Похожие патенты:
Изобретение относится к области экологии, в частности к сорбционной очистке водных растворов от токсичных соединений фторангидрида метилфторфосфоновой кислоты CH3POF2, цианидов и мышьяковистых соединений, и может быть использовано в фильтрах для очистки воды коллективного пользования и в полевых средствах водообеспечения.

Изобретение может быть использовано для охлаждения объектов, а также для очистки поверхностей деталей промышленного оборудования от эксплуатационных и технологических поверхностных загрязнений.

Изобретение относится к нанотехнологии, электротехнике и электронике и может быть использовано при изготовлении проводящих наполнителей для функциональных композитов или компонентов электронных схем.

Изобретение относится к области энергетики и может быть использовано для частичного замещения углеводородного топлива. Устройство для сжигания воды в топке котла содержит камеру нагревания и испарения воды, камеру разложения перегретого пара.

Способ комбинированного получения смеси водорода и азота, а также монооксида углерода при помощи криогенной дистилляции и криогенной промывки, в котором обогащенную метаном жидкость (45) вводят на первый промежуточный уровень скрубберной колонны (15) в качестве первой промывной жидкости, и по меньшей мере одну обогащенную азотом жидкость (73) вводят на уровень выше первого уровня скрубберной колонны в качестве второй промывной жидкости, и смесь водорода и азота отводят в виде верхнего газа (27) из скрубберной колонны.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении конденсаторов и суперконденсаторов, а также астрономических инструментов для космических аппаратов.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении люминесцентных материалов для светодиодов, в оптоэлектронных устройствах и биомедицине.

Изобретение относится к биоэнергетике, в частности к извлечению электрической энергии из сине-зеленых водорослей. Установка для получения электрической энергии из сине-зеленых водорослей включает трубопровод, биовегетарий, источник света, гидротаранный механизм и биореактор с анодом и катодом, выполненными из электропроводного углеродосодержащего нано-структурированного войлока и разделенными мембраной, колонн из светопроницаемого материала, соединенных трубопроводами через гидравлические затворы с гидротаранным механизмом и емкость для воды.

Изобретение относится к переработке углеродосодержащего сырья и может быть использовано для получения продуктов с содержанием аморфного диоксида кремния и аморфного углерода различной степени чистоты.

Изобретение относится к области энергетики и предназначено для одновременного производства тепла и электроэнергии при помощи когенерационных установок с двигателем внутреннего сгорания.
Наверх