Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции



Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции
Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции
Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции
Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции
G01R31/083 - Устройства для определения электрических свойств; устройства для определения местоположения электрических повреждений; устройства для электрических испытаний, характеризующихся объектом, подлежащим испытанию, не предусмотренным в других подклассах (измерительные провода, измерительные зонды G01R 1/06; индикация электрических режимов в распределительных устройствах или в защитной аппаратуре H01H 71/04,H01H 73/12, H02B 11/10,H02H 3/04; испытание или измерение полупроводниковых или твердотельных приборов в процессе их изготовления H01L 21/66; испытание линий передачи энергии H04B 3/46)

Владельцы патента RU 2730549:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)

Изобретение относится к электроизмерительной технике и может быть использовано в электроустановках, на электрических станциях и подстанциях, электрических сетях и сетях связи для определения состояния изоляции и прогнозирования ресурса изоляции. Технический результат заключается в повышении надежности и обеспечении селективности системы. Достигается благодаря установки в систему блока задержки. Этот блок осуществляет беспрепятственную передачу сигналов токов обратной и нулевой последовательности в рабочем режиме системы. В момент включения линии под напряжение этот блок на определенное время разрывает связь между выходами датчиков тока обратной и нулевой последовательности и входами микроконтроллера. Промежуток времени, на который прерывается связь, должен обеспечивать достаточное затухание бросков зарядных токов и ложных срабатываний системы под влиянием этих токов. Содержит трансформаторы тока нулевой последовательности; датчики тока нулевой последовательности; трансформатор напряжения нулевой последовательности; датчик напряжения нулевой последовательности; микроконтроллер; блок питания; преобразователь интерфейсов; персональный компьютер; трансформаторы тока; фильтр токов обратной последовательности; блок задержки. 3 ил.

 

Изобретение относится к электроизмерительной технике и может быть использовано в электроустановках, на электрических станциях и подстанциях, электрических сетях и сетях связи для определения состояния изоляции и прогнозирования ресурса изоляции.

Известна автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий (Патент РФ № 112525. Автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий / Полуянович Н.К., Стульнева А.В., Дубяго М.Н. Опубл. 10.01.2012 Бюл. №1), содержащая по числу присоединений трансформаторы тока нулевой последовательности, датчики тока нулевой последовательности, измерительный трансформатор напряжения нулевой последовательности, датчик напряжения нулевой последовательности, микроконтроллер, персональный компьютер, отличающаяся тем, что в нее введен преобразователь интерфейсов, блок питания микроконтроллера, выходы трансформаторов тока нулевой последовательности соединены с входами соответствующих датчиков тока нулевой последовательности, соответствующие выходы датчиков тока нулевой последовательности соединены с первыми входами микроконтроллера, выход трансформатора напряжения нулевой последовательности соединен со входом датчика напряжения нулевой последовательности, выход датчика напряжения нулевой последовательности соединен со вторыми входами микроконтроллера, преобразователь интерфейсов соединен с первым выходом микроконтроллера, второй выход микроконтроллера соединен с блоком питания, вход персонального компьютера соединен с выходом преобразователя интерфейсов.

Работа устройства основана на измерении уровня тока нулевой последовательности (ТНП) в контролируемом присоединении и напряжения нулевой последовательности в кабельной линии. При ослаблении фазной изоляции увеличивается ток нулевой последовательности (амплитуда и фаза тока нулевой последовательности). Данные о состоянии кабельной линии обрабатываются микроконтроллером, в нем же полученные данные сравниваются с допустимой амплитудой вектора ТНП и, если имеет место превышение ее значения, определяется угол между вектором ТНП и вектором межфазного напряжения, в результате чего определяется, соответствует ли возникший ток дефекту изоляции и, если не соответствует, то произошло замыкание на землю.

По значению этого угла с заданными диапазонами определяется, в какой из фаз произошел дефект. Полученные данные проходят обработку в математической модели, и система определяет расстояние до дефекта и сопротивление дефекта или, если дефект только намечается, система прогнозирует время, через которое случится пробой.

Данная система обеспечивает отыскание повреждений, оценка состояния силовых кабельных линиях, благодаря определению сопротивления дефекта и расстояния до дефекта, прогнозирование намечающегося повреждения кабельной линии.

Недостаток данной системы состоит в том, что она контролирует только фазную изоляцию, что позволяет обнаруживать появление и следить за развитием процессов возникновения замыканий фазы на землю. Но в электрических сетях нередко возникают процессы снижения электрической прочности межфазной изоляции, что приводит в итоге к возникновению коротких замыканий между фазами и нарушению электроснабжения. Замыкания между фазами (двухфазные и трехфазные) не сопровождаются появлением токов нулевой последовательности, поэтому данное устройство не обеспечивает заблаговременного выявления таких повреждений и прогнозирования ресурса междуфазной изоляции.

Также данная система не позволяет определить с достаточной точностью место возникновения повреждения, так как снижение электрической прочности изоляции может возникнуть вне линии на небольшом расстоянии от ее конца и в этом случае сложно определить истинное место возникновения повреждения.

Наиболее близким к изобретению по использованию, технической сущности и достигаемому техническому результату является селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий (Патент РФ № 2018135617. Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий / Бирюлин В.И., Куделина Д.В. Опубл. 23.09.2019).

Эта система содержит трансформаторы тока нулевой последовательности; датчики тока нулевой последовательности; трансформатор напряжения нулевой последовательности; датчик напряжения нулевой последовательности; микроконтроллер; блок питания; преобразователь интерфейсов; персональный компьютер; трансформаторы тока; фильтр токов обратной последовательности.

Контроль токов и напряжений как обратной, так и нулевой последовательности не позволяет достаточно точно определить место возникновения повреждений.

Недостаток данной системы состоит в том, что она может ложно сработать в случае подачи напряжения на контролируемую линию (при ее включении в электрическую сеть). Когда линия находится в отключенном положении емкости фаз относительно земли, и междуфазные емкости не имеют электрического заряда, то есть разряжены. При появлении напряжения на линии неизбежно возникает бросок зарядного тока линии. Зарядный ток протекает через трансформаторы тока комплекта 1 и не протекает через трансформаторы тока комплекта 2, что является эквивалентным режиму возникновения повреждения изоляции на контролируемой линии. По этой причине система может дать ложный сигнал о повреждении изоляции.

Техническая задача предполагаемого изобретения заключается в предотвращении возможного возникновения ложного сигнала о повреждении изоляции при подключении кабельной линии к электрической сети или подаче на нее напряжения.

Задача достигается тем, что в систему устанавливается блок задержки. Этот блок осуществляет беспрепятственную передачу сигналов токов обратной и нулевой последовательности в рабочем режиме системы (линия находится под напряжением). В момент включения линии под напряжение этот блок на определенное время разрывает связь между выходами датчиков тока обратной и нулевой последовательности и входами микроконтроллера. Промежуток времени, на который прерывается связь, должен обеспечивать достаточное затухание бросков зарядных токов, что позволит избежать ложных срабатываний системы под влиянием этих токов.

Комплекты 1 и 2 осуществляют измерение токов обратной и нулевой последовательности, как в начале, так и в конце защищаемой линии. Сравнение значений этих токов позволяет определить возникновение повреждения изоляции только на защищаемой линии, так как повреждения изоляции вне защищаемой линии (особенно при близких к этой линии повреждениях) будут сопровождаться одинаковыми значениями токов обратной и нулевой последовательности, как в начале, так и в конце защищаемой линии. Это позволит четко локализовать элемент электрической сети с поврежденной изоляцией, что сократит время на поиск и устранение дефекта.

Cущность изобретения поясняется чертежами, где на фиг.1 изображены два измерительных комплекта, устанавливаемых в начале и конце защищаемой линии. На фиг. 2 приведена схема измерительного комплекта селективной автоматизированной системы диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции.

Устройство на фиг.2 состоит из: 1, 3, 5 – трансформаторы тока нулевой последовательности; 2, 4, 6 – датчики тока нулевой последовательности; 7 – трансформатор напряжения нулевой последовательности; 8 – датчик напряжения нулевой последовательности; 9 – микроконтроллер; 10 – блок питания; 11 – преобразователь интерфейсов; 12 – персональный компьютер; 13 – трансформаторы тока; 14 – фильтр токов обратной последовательности; 15 – блок задержки.

Выходы трансформаторов тока нулевой последовательности 1, 3, 5 соединены с входами соответствующих датчиков тока нулевой последовательности 2, 4, 6, соответствующие выходы датчиков тока нулевой последовательности соединены с входами блока задержки 15, выход трансформатора напряжения нулевой последовательности 7 соединен со входом датчика напряжения нулевой последовательности 8, выход датчика напряжения нулевой последовательности 8 соединен с входами блока задержки 15, преобразователь интерфейсов 11 соединен с первым выходом микроконтроллера 9, второй выход микроконтроллера 9 соединен с блоком питания 10, вход персонального компьютера 12 соединен с выходом преобразователя интерфейсов 11, трансформаторы тока по числу фаз защищаемого присоединения 13, трансформатор напряжения нулевой последовательности 7, фильтр токов обратной последовательности 14, выходы трансформаторов тока 13 и трансформатора напряжения нулевой последовательности 7 соединены с входами соответствующих фильтров токов обратной последовательности 14, выходы фильтра токов обратной последовательности 14 соединены с входами блока задержки 15, выходы блока задержки 15 соединены с входами микроконтроллера 9.

На фиг.3 точками 1 и 2 показаны места повреждений на защищаемой линии и вне защищаемой линии соответственно.

Работает селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции следующим образом. При нормальном состоянии изоляции защищаемой кабельной линии или при возникновении внешнего повреждения (за пределами защищаемой линии) токи в начале и конце линии будут практически одинаковыми. При возникновении повреждения изоляции на защищаемой линии ток в начале линии становится больше, чем ток в конце этой линии.

Постоянное сравнение значений токов обеспечивает непрерывный контроль состояния линии и реагирование только на повреждения фазной и междуфазной изоляции, возникающие на этой линии. Повреждения, появляющиеся вне линии, не приведут к срабатыванию данной системы диагностики и контроля состояния изоляции силовых кабельных линий, даже если электрические параметры будут примерно одинаковыми с повреждением на защищаемой линии, как в случае, если точки повреждения находятся, как показано на фиг.3 – точка 1 на защищаемой линии и точка 2 вне защищаемой линии.

Если защищаемая линия находится в отключенном положении, то емкости фаз относительно земли и междуфазные емкости находятся в разряженном состоянии. В момент подключения кабельной линии к электрической сети неизбежно возникает бросок тока заряда этих емкостей. Этот ток протекает только через трансформаторы тока комплекта 1 (фиг.1), ток нагрузки протекает же как через трансформаторы тока комплекта 1, так и комплекта 2 (фиг.1). Это приводит к тому, что возникает разность токов между комплектом 1 и комплектом 2, создавая тем самым условия для ложного срабатывания защиты и отключения от сети неповрежденной линии.

Для устранения ложного срабатывания используется блок задержки 15 (фиг.2). Данный блок обеспечивает кратковременное отключение выходов фильтров токов от входов микроконтроллера в момент включения линии под напряжение. Таким образом, система не будет реагировать на появление зарядного тока. После некоторого промежутка времени, блок задержки подключит выходы фильтров токов к входам микроконтроллера и система перейдет в рабочее состояние с контролем токов защищаемой линии.

Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции позволяет определить место возникновения повреждения изоляции кабельных линий, если повреждение расположено на контролируемой линии, определяется примерное расстояние до места локального дефекта изоляции и сопротивление этого дефекта без отключения оборудования по изменению параметров рабочего режима этой линии, обеспечивает блокировку ложного срабатывания при бросках зарядного тока, возникающих при подключении линии под напряжение.

Селективная автоматизированная система диагностики и контроля состояния изоляции силовых кабельных линий с блоком задержки для предотвращения возникновения ложного сигнала о повреждении изоляции содержит измерительный комплект, содержащий трансформаторы тока нулевой последовательности по числу присоединений, датчики тока нулевой последовательности, измерительный трансформатор напряжения нулевой последовательности, датчик напряжения нулевой последовательности, микроконтроллер, персональный компьютер, преобразователь интерфейсов, блок питания микроконтроллера, фильтр токов обратной последовательности, выходы трансформаторов тока нулевой последовательности соединены с входами соответствующих датчиков тока нулевой последовательности, выход трансформатора напряжения нулевой последовательности соединен со входом датчика напряжения нулевой последовательности, преобразователь интерфейсов соединен с первым выходом микроконтроллера, второй выход микроконтроллера соединен с блоком питания, вход персонального компьютера соединен с выходом преобразователя интерфейсов, трансформаторы тока по числу фаз защищаемого присоединения, трансформатор напряжения нулевой последовательности, фильтр токов обратной последовательности, выходы трансформаторов тока и трансформатора напряжения нулевой последовательности соединены с входами фильтра токов обратной последовательности, отличающаяся тем, что в систему введен блок задержки, расположенный между выходами датчиков тока и напряжения нулевой последовательности и входами микроконтроллера.



 

Похожие патенты:

Использование: в области электроэнергетики для защиты электрических сетей. Технический результат - повышение точности дистанционной защиты.

Изобретение относится к области электротехники, в частности к устройствам секционирования линий электропередачи, и предназначена для коммутации, защиты электрической сети.

Изобретение относится к области электротехники, в частности к системам автоматического предотвращения нарушения устойчивости и к автоматическим системам ограничения снижения частоты в изолированных энергетических системах.

Использование: в области электротехники. Технический результат - повышение помехозащищенности способа автоматического повторного включения кабельно-воздушной линии электропередачи (ЛЭП) и его упрощение.

Изобретение относится к модулю уплотнения или пропускного приспособления для кабелей и проводов. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к машиностроению. Узел отделки щитка содержит панель и сдвижную крышку.

Использование: в области электротехники. Технический результат - повышение помехоустойчивости к влиянию высших гармоник напряжения сети на пороги срабатывания по действующим значениям тока утечки и напряжения сети.

Использование: в области электротехники для защиты потребителей от коротких замыканий и перегрузки в электрических сетях. Технический результат – обеспечение реагирования устройства на приращения тока в электрической сети.

Изобретение относится к области технической диагностики и эксплуатации судовых дизель-генераторных агрегатов (ДГА). Способ определения перерасхода топлива с целью определения технического состояния и соответствия используемого топлива штатному дизельному топливу ДГА заключается в том, что для конкретных режимов работы результаты измерений расхода топлива, активной мощности, коэффициента мощности по показаниям штатных измерительных приборов вводят в математическую устанавливающую связь расхода топлива исправного ДГА при использовании штатного дизельного топлива с мощностью и электрической нагрузки.

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. Технический результат заключается в расширении функциональных возможностей за счет уменьшения времени срабатывания защиты при перегрузке по току, защиты нагрузки от выходного напряжения при его значениях выше допустимых, и увеличении КПД.

Изобретение относится к области электротехники, в частности к аккумуляторным блокам в устройствах с аккумуляторным питанием. Технический результат заключается в повышении надежности аккумуляторного блока в устройстве с аккумуляторным питанием.
Наверх