Биоматериал на основе гидроксиапатита

Изобретение относится к медицине. Биоматериал на основе гидроксиапатита, содержащий фторид кальция и диоксид циркония, причем в качестве гидроксиапатита он содержит гидроксиапатит, полученный путем химического осаждения из водных растворов. Все компоненты взяты при определенном соотношении. Гранулированный состав всех компонентов составляет 20-40 мкм. Изобретение позволяет использовать композиционный биоматериал на основе гидроксиапатита для замены и восстановления костной ткани при различных костных патологиях, изготовления костных имплантатов и замещения дефектов, который сохраняет остеотропное поведение в биологических средах за счет его высокой биосовместимости к минерализованным костным тканям человека. 2 ил., 2 пр.

 

Изобретение относится к области биологически активных медицинских и фармацевтических материалов, применяемые для ортопедической стоматологии, в качестве носителя биологически активных веществ и хирургии при восстановлении и лечении костной ткани.

Известен порошкообразный материал для изготовления керамики для костных имплантатов, содержащий 75-85 мас.% гидроксиапатита и 15-25 мас.% карбоната кальция (патент RU № 2440149; МПК A61L 27/02, A61L 27/12, B82B 1/00; 2012).

Однако недостатком известного материала является использование в его составе карбоната кальция, который не обладает ярко выраженной активацией репаративного остеогенеза, что обусловлено его пониженной биосовместимостью к минерализованным костным тканям организма (Б.А. Магрупов, Т.Т. Шадманов, А.А. Ташпулатов, Р.Р. Ходжаев, Э.Ю. Валиев, “Реакция костной ткани на некоторые имплантаты в эксперименте”, Морфология. 2012. Т.VI, № 2. С.19-28). (https://morphology.dp.ua/_pub/MORPHO-2012-06-02/12mbaive.pdf). Кроме того, карбонат кальция применяется в медицине, в основном, как всасывающий антацид, причем терапия его применения может вызвать так называемый кислотный рикошет – увеличение продукции соляной кислоты после его введения в организм.

Известен композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов, содержащий добавку при следующих соотношениях компонентов в материале, масс.%: фторгидроксиапатит (замещение анионов OH- на ионы F- в количестве 10%) - 40-60, частично стабилизированный диоксид циркония (содержание оксида иттрия 3 мол.%) - 40-60 и добавка силикат натрия в количестве 2-5 масс.%, взятом сверх 100% по отношению к фторгидроксиапатиту и диоксиду циркония (патент RU № 2585954; МПК A61L 27/04, A61L 27/12; 2016).

Однако недостатками известного материала являются: во-первых, использование высокой температуры спекания при его получении ведет к разложению гидроксиапатита с образованием трикальций фосфата, который не является полным аналогом минерализованных костных тканей человека, что значительно ухудшает свойства биосовместимости, во-вторых, наличие спекающей добавки (силикат натрия), поскольку наличие силикатов натрия не желательно в биоматериалах вследствие их токсичности (2 класс опасности).

Наиболее близким по технической сущности к предлагаемому является биоматериал на основе гидроксиапатита (ГАП), содержащий 5-10% коммерческого материала CZ (CaO-ZrO2) с добавлением небольшого количества CaF2 (5%). В качестве гидроксиапатита использован промышленно полученный твердофазным синтезом продукт фирмы Sigma-Aldrich (Zaw Linn Htun et al. “Characterization of CAO-ZrO2 reinforced HAP biocomposite for strength and toughness improvement” / Procedia Chemistry 19 (2016). Рр.510–516.) (прототип).

Однако известный материал характеризуется пониженной биосовместимостью к костным тканям организма, во-первых, за счет наличия в его составе трикальций фосфата, который не является полным аналогом минерализованных костных тканей человека, во-вторых, за счет наличия в его составе двойного оксида CaZrO3, который не может войти в структуру ГАП вследствие большого радиуса цирконата. Кроме того, введение оксида кальция повышает щелочную реакцию биоматериала во влажной среде, вызывая раздражение околокостной ткани.

Таким образом, перед авторами стояла задача разработать композиционный биоматериал на основе гидроксиапатита для замены и восстановления костной ткани при различных костных патологиях, изготовления костных имплантатов и замещения дефектов, сохраняющий остеотропное поведение в биологических средах за счет его высокой биосовместимости к минерализованным костным тканям человека.

Поставленная задача решена в предлагаемом биоматериале на основе гидроксиапатита, содержащем фторид кальция и диоксид циркония, который в качестве гидроксиапатита содержит гидроксиапатит, полученный путем химического осаждения из водных растворов, при следующем соотношении компонентов (мас.%):

гидроксиапатит - 76 ÷ 79;
фторид кальция - 15 ÷ 16;
оксид циркония - 6 ÷ 8;

при этом гранулированный состав всех компонентов составляет 20-40 мкм.

В настоящее время из патентной инаучно-техничекой литературы не известен биоматериал для замены костных тканей на основе гидроксиапатита, полученного путем химического осаждения из водных растворов, в предлагаемых пределах содержания компонентов: гидроксиапатита, фторида кальция и оксида циркония, при гранулированном составе всех компонентов 20-40 мкм.

В результате исследований, проведенных авторами, было установлено, что высокая биосовместимость, максимально приближенная к минеральной кости человека, может быть достигнута при использовании в качестве матрикса биоматериала гидроксиапатита, полученного путем химического осаждения из водных растворов, поскольку в этом случае возможно получение биокомпозита, армированного фторидом кальция и оксидом циркония, при температуре спекания ниже 1000оС, что исключает возможность разложение гидроксиапатита с образованием трикальций фосфата. Кроме того, результаты рентгено-фазового анализа подтверждают полное отсутствие примесной фазы цирконата кальция. Таким образом, предлагаемый биоматериал представляет собой матрикс – гидроксиапатит, являющийся полным аналогом минерализованной костной ткани, с диспергированными в нем биоинертными непоглощаемыми модифицирующими добавками – оксидом циркония и фторидом кальция. Авторами также установлены пределы количественного содержания компонентов, обеспечивающие получение максимального эффекта. Так при увеличении содержания гидроксиапатита более, чем 79 мас.%, и уменьшении содержания модифицирующих добавок менее, чем 15 мас.% фторида кальция и менее, чем 6 мас.% оксида циркония, у биоматериала появляется ломкость и нестабильность к механическим нагрузкам. При уменьшении содержания гидроксиапатита менее, чем 76 мас.%, и увеличении содержания модифицирующих добавок более, чем 16 мас.% фторида кальция и более, чем 8 мас.% оксида циркония, ухудшается сродство к костной ткани. Предлагаемые пределы гранулированного состава всех компонентов обеспечивают получение плотной керамики, обладающей равномерной плотной структурой с высокой степенью кристалличности за счет низких значений удельной поверхности и пористости, что улучшает условия для восстановления дефекта кости.

За счет отсутствия примесных фаз, снижающих биосовместимость к костной ткани, предлагаемый биоматериал не вызывает реакции отторжения и обладает способностью активно связываться со здоровой костной тканью, ускоряя процесс регенерации и реабилитации, расширяя возможные области его использования в ортопедии: при восстановлении дефектов костной ткани, для формирования новой костной ткани взамен удаленной, для заполнения полостей костной ткани при удалении новообразований костной ткани.

Предлагаемый способ может быть осуществлен следующим образом. В мельнице при одновременном смешивании и измельчении исходных компонентов гидроксиапатита, полученного путем химического осаждения из водных растворов, фторида кальция и оксида циркония взятых в соотношении (мас.%): гидроксиапатит - 76÷79; фторид кальция – 15÷16; оксид циркония - 6÷8. Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200-300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950°С в течение 2-2,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2-ZrO2 в виде мелкозернистого прочного материал с размером частиц в диапазоне 20÷40 мкм. Материал аттестуют рентгено-фазовым анализом. Потерю массы определяют на аналитических весах ВЛР-200, а усадку прессовок при спекании оценивали по изменению геометрических параметров с помощью микрометра МК 0-25 мм. Микротвердость определяют микротвердомером ПМТ-3М (нагрузка 0,98 Н (100 г), время нагружения – 10 с). Удельную поверхность и пористость определяют методом БЭТ (анализатор площади поверхности и пористости на приборе Gemini VII 2390 V1.03, V1.03 t).

На фиг.1 изображена микроструктура полученного биоматериала (пример 1).

На фиг.2 изображена микроструктура полученного биоматериала (пример 2).

Предлагаемое техническое решение иллюстрируется следующими примерами:

Пример 1. Берут 76 грамм (76 мас.%) порошка гидроксиапатита, полученного путем химического осаждения из водных растворов (патент RU 2104924), 16 грамм (16 мас.%) порошка фторида кальция и 8 грамм (8 мас.%) порошка диоксида циркония, помещают в вибромельницу с агатовой ступкой и шариком. Полученная порошковая смесь просеивают через сито с ячейкой ≤ 43 мкм и сев прессуют в заготовки (таблетки) при давлении 200 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают термообработке при температуре 950 °С в течение 2 часов. В результате получают композиционный материал (Ca10(PO4)6(OH)2-CaF2-ZrO2, в виде плотного мелкозернистого прочного материала с размером частиц 20÷40 мкм (фиг.1.), характеризующегося потерей массы 7,45%; удельной усадкой 11,21%; микротвердостью 351 МПа; удельной поверхностью 0,036 м2/г и пористостью 4,4005 м2/г.

Пример 2. Берут 79 грамм (79 мас.%) порошка гидроксиапатита, полученного путем химического осаждения из водных растворов (патент RU 2104924), 15 грамм (15 мас.%) порошка фторида кальция и 6 грамм (6 мас.%) порошка диоксида циркония, помещают в вибромельницу с агатовой ступкой и шариком. Полученная порошковая смесь просеивают через сито с ячейкой ≤ 43 мкм и сев прессуют в заготовки (таблетки) при давлении 300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают термообработке при температуре 950 °С в течение 2,5 часов. В результате получают композиционный материал (Ca10(PO4)6(OH)2-CaF2-ZrO2, в виде плотного мелкозернистого прочного материала с размером частиц 20÷40 мкм (фиг.2.), характеризующегося потерей массы 7,18%; удельной усадкой 13,35%; микротвердостью 384 МПа.; удельной поверхностью 0,0364 м2/г и пористостью 4,4005 м2/г.

Таким образом, авторами предлагается композиционный биоматериал (Ca10(PO4)6(OH)2-CaF2-ZrO2, имеющий мелкокристаллическую структуру с размером частиц в диапазоне 20÷40 мкм, имеющий высокую биосовместимость, максимально приближенную к минеральной части кости человека.

Биоматериал на основе гидроксиапатита, содержащий фторид кальция и диоксид циркония, отличающийся тем, что в качестве гидроксиапатита он содержит гидроксиапатит, полученный путем химического осаждения из водных растворов, при следующем соотношении компонентов, мас.%:

гидроксиапатит 76 - 79
фторид кальция 15 - 16
диоксид циркония 6 - 8

при этом гранулированный состав всех компонентов составляет 20-40 мкм.



 

Похожие патенты:

Изобретение относится к области медицины, а именно к травматологии и ортопедии. Предложен способ получения биоактивного покрытия c бактерицидными свойствами на имплантате из титана, включающий обезжиривание и последующее активирование поверхности имплантата из титана.

Изобретение относится к области медицины и медицинской технологии и представляет собой имплантат костной ткани, отличающийся тем, что имплантат, или по меньшей мере часть имплантата, состоит из жада - плотного, прочного, способного к остеоинтеграции минерального агрегата со спутанно-волокнистой или тонкокристаллической структурой, выбранного из следующей группы силикатных минеральных агрегатов и горных пород: жадеитовый жад, нефритовый жад, ксонотлитовый жад, везувианитовый жад, бовенитовый жад, гидрогроссуляровый жад.

Изобретение относится к медицине, а именно к способу напыления биосовместимого покрытия. Способ напыления биосовместимого покрытия, модифицированного компонентом с низкой температурой разложения, включающий послойное нанесение электроплазменным напылением на титановую основу покрытия, состоящего из слоя титана и слоя гидроксиапатита (ГА), модифицированного бемитом, причём электроплазменное напыление слоя из гидроксиапатита, модифицированного бемитом, производят с дистанции напыления 50-60 мм в течение 6-8 с и токе дуги 320 А.

Изобретение относится к области медицины, а именно к кальцийфосфатному цементу для заполнения костных дефектов. Кальцийфосфатный цемент для заполнения костных дефектов, состоящий из порошка, содержащего трикальцийфосфат, гидроксиапатит и цементной жидкости, содержащей фосфат магния, фосфорную кислоту, карбонат калия и воду, при определенном соотношении компонентов.

Изобретение относится к медицине и раскрывает биоактивный композиционный материал для замещения костных дефектов, а также способ получения такого материала. Композиционный материал обладает повышенной биосовместимостью с костной тканью, обеспечивает более качественную замену дефектов сложной формы, что достигается путем изготовления указанного материала в виде цементной жидкости, содержащей воду, фосфат магния, оксид магния, оксид цинка и дигидрофосфат натрия, и реакционно-твердеющего порошка, содержащего гидроксиапатит, трикальцийфосфат и брушит, при соответствующем соотношении компонентов.

Изобретение относится к медицине и биотехнологии. Описан способ получения композиционного материала для замещения костных дефектов, включающий: подготовку порошковой смеси, содержащей порошок альфа-Ca3(PO4)2; подготовку пасты при добавлении жидкости затворения в виде водного раствора, содержащего карбонат-ионы; формование образцов или изделий из пасты; гидролитическую обработку образцов или изделий в водном растворе, содержащем карбонат-ион, и сушку.
Изобретение относится к медицине, а именно к материалу для замещения дефектов костной ткани, содержащему препарат “Деринат” в количестве 8-12 мас.%, гидроксиапатит в количестве 15-25% и гипс - остальное.
Изобретение относится к медицине, конкретно к способу получения пористой керамики, которая может использоваться в реконструктивно-пластической хирургии в качестве материала для замещения костных дефектов, в стоматологии.
Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс.
Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов щелочных металлов.

Изобретение относится к косметической промышленности и может применяться для деколорирования (восстановительного обесцвечивания) окрашенных оксидационными и/или прямыми красителями кератиновых волокон, таких как волосы человека.
Наверх