Линейный электропривод

Линейный электропривод относится к электромеханическим линейным исполнительным механизмам, представляющим собой совмещённую конструкцию электродвигателя и эксцентриковой передачи винт - гайка. Линейный электропривод содержит электродвигатель и эксцентриковую передачу винт - гайка, в которой входной вал выполнен с эксцентриками, на которых с возможностью вращения посажены винты, взаимодействующие с винтовой резьбой гайки. Поверхности винтов и гайки выполнены с дополнительными сопрягаемыми зубчатыми профилями. Электродвигатель агрегатирован с передачей винт - гайка, для чего его ротор непосредственно соединён с входным валом передачи, а гайка передачи посажена с возможностью осевого перемещения снаружи на корпус электродвигателя посредством зубчатого профиля на её внутренней поверхности, который образует шлицевое соединение с зубьями, выполненными дополнительно на наружной поверхности корпуса. Техническим результатом является создание электропривода, в котором уменьшатся линейные размеры привода при той же длине его хода. 4 ил.

 

Изобретение относится к электромеханическим линейным исполнительным механизмам, представляющим собой совмещённую конструкцию электродвигателя и эксцентриковой передачи винт - гайка.

Известен линейный электропривод RU2 213 896, который содержит электродвигатель с полым ротором, и размещённую внутри полого ротора планетарную винтовую передачу с резьбовыми роликами. Винтовая гайка этой передачи связана с полым ротором через дополнительный стакан. Винт связан с выходным штоком. Основным недостатком такого привода является относительно большой момент инерции вращающейся части и обусловленная этим низкая скорость отработки положения исполнительного органа.

Линейный электропривод в RU 2 427 750 лишён этого недостатка за счёт того, что полый ротор двигателя связан с одним концом винта, а винтовая гайка связана с выходным штоком.

При применении линейных электроприводов в ряде областей техники, в частности в аэрокосмической технике, к ним предъявляются повышенные требования по надёжности, точности позиционирования, а также по минимальным удельным массогабаритным показателям. Оба вышеописанных привода не удовлетворяют таким требованиям, т.к. имеют сложную конструкцию с большим количеством деталей, обусловленным применением винтовой передачи с резьбовыми роликами.

Известна эксцентриковая передача винт - гайка, описанная в заявке на изобретение №2018126056, фиг.5. Она содержит винты, посаженные с возможностью вращения на эксцентрики входного вала. Эксцентрики ориентированы симметрично вокруг оси вала. В частности, при наличии трёх эксцентриков, они ориентированы друг относительно друга под углом в 120 градусов. Ось гайки совпадает с осью входного вала. Отличительной особенностью передачи является винтовая пара, детали которой кроме винтовой резьбы содержат сопрягаемые зубчатые профили. Участки с зубчатым профилем могут быть выполнены поверх винтовой резьбы, но для повышения нагрузочной способности механизма их целесообразно расположить на каждом винте в центре между винтовой резьбой, выполненной по краям винта. Наличие зубчатого зацепления обеспечивает отсутствие проскальзывания в паре винт-гайка, уменьшение люфтов и вследствие этого повышенную точность позиционирования. Если в этой конструкции входной вал соединить с ротором электродвигателя, а гайку посадить в корпусе с возможностью только осевого перемещения, то при вращении ротора двигателя гайка будет совершать линейное перемещение, т.е. мы получим линейный электропривод. При этом и двигатель, и передача винт гайка будут иметь собственные корпуса, причём корпус передачи должен быть длиннее винтовой пары на величину хода передачи.

Такой линейный привод будет иметь достаточно большие осевые габариты, особенно для приводов с большим ходом. Кроме того, в случае расположения зубчатого профиля отдельно от винтовой резьбы возникают технологические проблемы, связанные с выбегом инструмента, которые увеличивают продольный размер каждого винта, и привода в целом.

Техническим результатом изобретения является уменьшение осевых размеров линейного привода.

Этот результат достигается за счёт того, что привод, как и прототип, содержит электродвигатель и эксцентриковую передачу винт - гайка. Входной вал передачи выполнен с эксцентриками, на которых с возможностью вращения посажены винты, взаимодействующие с винтовой резьбой гайки. Обращённые друг к другу поверхности винтов и гайки выполнены с дополнительными зубчатыми профилями, сопрягающимися друг с другом. В отличие от прототипа двигатель агрегатирован с передачей винт - гайка, для чего его ротор непосредственно соединён с входным валом передачи. Гайка передачи посажена с возможностью осевого перемещения снаружи на корпус электродвигателя посредством зубчатого профиля на её внутренней поверхности, который образует шлицевое соединение с зубьями, выполненными дополнительно на наружной поверхности корпуса.

Зубчатый профиль на винте целесообразно выполнить на отдельных деталях, которые установлены в середине винтов. Это обеспечивает равномерность распределения нагрузки на каждом из винтов.

Изобретение иллюстрируется фигурами 1-4. На фиг. 1 изображён продольный разрез предлагаемого линейного электропривода, а на фиг. 2 общий вид винта с зубчатым поясом, выполненным на отдельной детали. На фиг. 3 и 4 показано поперечное сечение привода по А-А и В-В.

Привод содержит электродвигатель 1 и передачу винт - гайка 2, образующие единую конструкцию. Ротор 3 двигателя 1 непосредственно соединён с входным валом 4 передачи винт - гайка. В данном конкретном примере ротор 3 установлен на одном конце вала 4. Этот конец вала 4 с ротором 3 посажен в корпусе 5 с помощью подшипников 6 и 7. В корпусе установлен также статор 8 двигателя 1.

Второй конец вала 4, выходящий за пределы корпуса 5, выполнен с тремя эксцентриками 9, 10 и 11, ориентированными симметрично относительно оси вала 4, так что образуют уравновешенную относительно этой оси систему. Эксцентриков может быть и два. Выбор их количества зависит от нагрузочной способности и долговечности работы подшипников 12, 13, 14. На каждом из эксцентриков на подшипниках 12, 13 и 14 посажены винты 15, 16, и 17 передачи винт - гайка. На наружной поверхности винтов 15, 16 и 17 кроме винтовой резьбы 18 выполнен зубчатый профиль 19 (см. фиг. 2 и 3). Он может быть выполнен как поверх всей винтовой резьбы на поверхности винта, так и на части поверхности винта, свободной от винтовой резьбы. Второй вариант обладает повышенными нагрузочными характеристиками, однако при изготовлении таких винтов возникают технологические трудности, связанные с необходимостью наличия выбега инструмента, которые увеличивают продольные размере винтов, что не всегда приемлемо. Для устранения этого недостатка зубчатый профиль целесообразно выполнить на отдельной детали, которая крепится на теле винта. Так, в частности, на фиг. 1, 2 и 3 зубчатый профиль 19 выполнен на двух полукольцах 20 и 21, которые закреплены на теле винта с помощью резьбовых соединений 22, расположенных между зубьями. Гайка 23 этой передачи соосна входному валу 4, расположена снаружи корпуса 5 и соединена со штоком 24 линейного привода. Гайка 23 по длине перекрывает корпус 5 электродвигателя 1 и эксцентриковую винтовую передачу 2. На внутренней поверхности гайки 23 кроме винтовой резьбы выполнены зубья 25, сопрягаемые с зубьями 19 винтов. На наружной поверхности корпуса 5 выполнены зубья 26 (см. фиг. 4). Зубья 25 на гайке 23 совместно с дополнительными зубьями 26 на наружной поверхности корпуса 5 образуют шлицевое соединение, которое позволяет гайке 23 совершать осевое перемещение вдоль корпуса 5, но препятствует вращению гайки. Для уменьшения трения скольжения зубья 26 целесообразно выполнить не по всей длине корпуса 5, а только на его участке, расположенном перед передачей, как это показано на фиг. 1. В этом случае гайка 23 базируется на противоположном конце корпуса 5 с помощью подшипника скольжения 27. Таким образом, корпус 5 электродвигателя 1 выполняет одновременно функцию корпуса передачи 2. Т.е. корпус 5 электродвигателя обеспечивает возможность хода гайки 23 на величину его длины, без увеличения полного продольного размера привода.

Работает электропривод следующим образом. При включении электродвигателя 1 его ротор 3 начинает вращать входной вал 4 эксцентриковой винтовой передачи 2. Винты 15, 16 и 17, сидящие на подшипниках 12, 13 и 14 на эксцентриках 9, 10, 11 входного вала 4, будут совершать орбитальное движение вокруг оси привода ОО1. Винтовая резьба 18 винтов будет взаимодействовать с винтовой резьбой гайки 23. Проскальзыванию резьбы препятствуют зубья 19 и 25 на винтах 15, 16 и 17 и гайке 23. Так как гайка 23 не может вращаться из-за шлицевого соединения её зубьев 25 с зубьями 26 на корпусе 5, то она вместе со штоком 24 будет перемещаться относительно винтов и корпуса 5 в осевом направлении.

Линейный электропривод, содержащий электродвигатель и эксцентриковую передачу винт - гайка, в которой входной вал выполнен с эксцентриками, на которых с возможностью вращения посажены винты, взаимодействующие с винтовой резьбой гайки, причём поверхности винтов и гайки выполнены с дополнительными сопрягаемыми зубчатыми профилями, отличающийся тем, что электродвигатель агрегатирован с передачей винт - гайка, для чего его ротор непосредственно соединён с входным валом передачи, а гайка передачи посажена с возможностью осевого перемещения снаружи на корпус электродвигателя посредством зубчатого профиля на её внутренней поверхности, который образует шлицевое соединение с зубьями, выполненными дополнительно на наружной поверхности корпуса.



 

Похожие патенты:

Группа изобретений относится к исполнительному механизму, приводимому в действие двигателем и состоящему из корпуса с входом для электропитания, в который входят: электродвигатель с соединениями для принятия тока от источника электричества; блок управления; приводная передача для соединения приводного внешнего устройства с электродвигателем и датчик температур, предназначенный регистрировать замеренную температуру Т внутри корпуса.

Изобретение относится к исполнительному приводу клапана для клапанов, кранов, задвижек или заслонок с функцией автоматического закрывания. Техническим результатом является создание привода клапана, который может использоваться на клапанах или заслонках различного типоразмера и обеспечивает надежное автоматическое закрывание.

Изобретение относится к исполнительному приводу клапана для клапанов, кранов, задвижек или заслонок с функцией автоматического закрывания. Техническим результатом является создание привода клапана, который может использоваться на клапанах или заслонках различного типоразмера и обеспечивает надежное автоматическое закрывание.

Изобретение относится к конструктивному ряду клапанов, прежде всего к конструктивному ряду газовых клапанов, имеющих различные типоразмеры. Серия (11) клапанов, включающая в себя несколько типов (А, В, С) клапанов различного типоразмера, причем: каждый тип (А, В, С) клапана из серии (11) клапанов включает в себя линейно перемещающийся запорный орган (19) клапана, с которым соотнесены клапанное седло (17), замыкающая пружина (20) и клапанный привод (21), клапанный привод (21) всех типов (А, В, С) клапанов выполнен унифицированным и обеспечивает унифицированный максимальный ход (h), серия (11) клапанов включает в себя по меньшей мере два типа (А, В, …) клапанов, замыкающие пружины (20) которых имеют различные характеристические кривые (I, II), различные замыкающие пружины (20) выполнены с обеспечением приложения различных запирающих усилий при посадке запорных органов (19) клапанов на клапанные седла (17), различные замыкающие пружины (20) выполнены с обеспечением приложения, предпочтительно, одинаковых запирающих усилий при находящихся в открытом положении запорных органах (19) клапанов.

Изобретение относится к конструктивному ряду клапанов, прежде всего к конструктивному ряду газовых клапанов, имеющих различные типоразмеры. Серия (11) клапанов, включающая в себя несколько типов (А, В, С) клапанов различного типоразмера, причем: каждый тип (А, В, С) клапана из серии (11) клапанов включает в себя линейно перемещающийся запорный орган (19) клапана, с которым соотнесены клапанное седло (17), замыкающая пружина (20) и клапанный привод (21), клапанный привод (21) всех типов (А, В, С) клапанов выполнен унифицированным и обеспечивает унифицированный максимальный ход (h), серия (11) клапанов включает в себя по меньшей мере два типа (А, В, …) клапанов, замыкающие пружины (20) которых имеют различные характеристические кривые (I, II), различные замыкающие пружины (20) выполнены с обеспечением приложения различных запирающих усилий при посадке запорных органов (19) клапанов на клапанные седла (17), различные замыкающие пружины (20) выполнены с обеспечением приложения, предпочтительно, одинаковых запирающих усилий при находящихся в открытом положении запорных органах (19) клапанов.

Группа изобретений относится к средствам обнаружения утечек, обусловленных негерметичностью трубопроводного затвора. Сущность: устройство (20) управления затвором (10) содержит корпус (22) с полостью (30), а также детектор неорганизованных выбросов.

Изобретение относится к приводам клапанов в частности к приводам, которые подходит, прежде всего, для газовых клапанов с функцией предохранительной блокировки, Технический результат заключается в создании привода клапана, который может использоваться в широком диапазоне напряжений и обеспечивает выдержку заданных максимальных значений времени закрытия.

Изобретение относится к регулировочному клапану для установки поперечного сечения потока в трубопроводе, прежде всего для высокодинамичной регулировки количества охлаждающего средства на участках охлаждения прокатных станов.

Группа изобретений относится к способу и устройству для диагностики клапана с использованием электрических приводов клапана. Электрический привод клапана содержит: электрический двигатель для приведения в действие клапана, датчики поворота для мониторинга поворота приводного вала, связанного с электрическим двигателем, для определения расстояния, проходимого приводным валом, датчик положения клапана для мониторинга положения элемента регулирования потока клапана.

Изобретение относится к области машиностроения, а именно – к обратным клапанам с сервоприводом. Клапан содержит корпус с центральной полостью, сообщённой с выполненными в нём двумя рабочими каналами.

Зубчатые венцы колеса и шестерни каждой ступени механической передачи изготавливают из материала с одинаковым углом ϕ° внутреннего трения, угол зацепления зубьев шестерни и колеса где r и R (м) - радиусы делительных окружностей шестерни и колеса в полюсе зацепления, причем в зубчатых передачах с одной и двумя линиями зацепления цилиндрических зубьев шестерни и колеса линии зацепления в полюсе зацепления выполняют ломаными на два равных отрезка, соответствующих по длине катету прямоугольного треугольника колеса, составленному с другим катетом и образующему с гипотенузой треугольника, равной радиусу R делительной окружности колеса, угол угол давления в передачах с одним полюсом зацепления и - в передачах с двумя полюсами зацепления принимают равными где угол ϕ° внутреннего трения материала колеса и шестерни определяют как ϕ°=45°-0,5arctgε, ε - диэлектрическая проницаемость материала колеса и шестерни, или ϕ°=45°-0,5arctgμ, μ - магнитная проницаемость материала колеса или шестерни; при длине Lш линий зацепления шестерни, равной длине Lк линий зацепления сопряженного с ней колеса, то есть Lш=Lк (м), в зацеплении при передаче крутящего момента от шестерни к колесу поверхность зуба шестерни без трения и скольжения перекатывают по поверхности зуба колеса; значения коэффициентов концентрации и неравномерности распределения нагрузки по длине линии зацепления на ширине В (м) зубьев шестерни и колеса принимают в расчетах соответственно равными КНβ=1, КFβ=1.
Наверх