Способ получения нанокапсул сухого экстракта расторопши

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности и предназначено для получения нанокапсул сухого экстракта расторопши. Сухой экстракт расторопши добавляют в суспензию каппа-каррагинана в циклогексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают фторбензол. Полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3. Использование изобретения обеспечивает упрощение и ускорение процесса получения нанокапсул, а также увеличение выхода по массе. 3 пр.

 

Изобретение относится к области нанотехнологии, медицины, фармакологии, косметической и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140 М1Ж A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул, отличающийся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - сухой экстракт расторопши, при получении нанокапсул методом осаждения нерастворителем с применением фторбензола в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием фторбензола в качестве осадителя, а также использование каппа-каррагинана в качестве оболочки частиц и сухого экстракта расторопши - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул сухого экстракта расторопши.

ПРИМЕР 1 Получение нанокапсул сухого экстракта расторопши, соотношение ядро : оболочка 1:3

1 г сухого экстракта расторопши добавляют в суспензию 3 г каппа-каррагинана в циклогексане в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 700 об/мин. Далее приливают 5 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул сухого экстракта расторопши, соотношение ядро : оболочка 1:1

1 г сухого экстракта расторопши добавляют в суспензию 1 г каппа-каррагинана в циклогексане в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 700 об/мин. Далее приливают 5 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

Пример 3 Получение нанокапсул сухого экстракта расторопши, соотношение ядро : оболочка 1:2

1 г сухого экстракта расторопши добавляют в суспензию 2 г каппа-каррагинана в циклогексане в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 700 об/мин. Далее приливают 5 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

Способ получения нанокапсул сухого экстракта расторопши, характеризующийся тем, что сухой экстракт расторопши добавляют в суспензию каппа-каррагинана в циклогексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают фторбензол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.



 

Похожие патенты:
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности и предназначено для получения нанокапсул сухого экстракта эхинацеи. Сухой экстракт эхинацеи добавляют в суспензию каппа-каррагинана в изогептане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают хладон-113.
Настоящее изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины, а именно к способу получения нанокапсул хлорамфеникола в геллановой камеди.

Предожен способ получения однофазного наноразмерного биомиметического гидроксиапатита, допированного силикат- и карбонат-анионами формулы Ca10-d(НРО4)×(РО4)6-x-y-z(СО3)y(SiO4)z(ОН)2+x+y-z-2d.

Изобретение относится к сельскому хозяйству. Кавитационный способ обеззараживания жидких органических отходов и приготовления органоминеральных удобрений для кавитационного воздействия на низкоконцентрированные стоки, получаемые при применении гидравлических или самотечных систем удаления навоза и помета из помещений, причем обеззараживание низкоконцентрированных навозных стоков осуществляют в смесителе-диспергаторе с добавлением оксида меди CuO в виде нанопорошка с размерами частиц от 20*10-9 м до 40*10-9 м.

Изобретение относится к области электротехники и может быть использовано в конструкциях симметричных кабелей связи на сети общего пользования и структурированных кабельных систем.

Изобретение относится к порошковой металлургии. Способ получения коррозионностойкого порошка из стали X17 включает электроэрозионное диспергирование стали Х17 в керосине осветительном при напряжении на электродах 90...110 В, ёмкости разрядных конденсаторов 58 мкФ и частоте следования импульсов 110...120 Гц.

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например волочильных инструментов.
Изобретение относится к способу лазерной наплавки металлических покрытий и может найти применение при формировании защитных шликерных покрытий на конструкционных материалах.

Изобретение относится к производству строительных материалов, конкретнее к производству сухих строительных смесей методом совместной механоактивации цемента и доломита, с последующей модификацией сухих строительных смесей углеродными наноструктурами.
Изобретение относится к способам диагностики патологий в биологических тканях. Предложен биомедицинский материал для диагностики патологий в биологических тканях, содержащий наноразмерный апконверсионный люминофор и органическую добавку, причем в качестве апконверсионного люминофора он содержит наноаморфный сложный силикат редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26⋅(8,5–10% мас.), а в качестве органической добавки – диметилглицеролаты кремния состава (CH3)2Si(C3H7O3)2⋅xC3H8O3, где 0,25 ≤ х ≤ 0,40, (остальное до 100% мас.).
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности и предназначено для получения нанокапсул сухого экстракта эхинацеи. Сухой экстракт эхинацеи добавляют в суспензию каппа-каррагинана в изогептане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают хладон-113.
Наверх