Биомедицинский материал для диагностики патологий в биологических тканях

Изобретение относится к способам диагностики патологий в биологических тканях. Предложен биомедицинский материал для диагностики патологий в биологических тканях, содержащий наноразмерный апконверсионный люминофор и органическую добавку, причем в качестве апконверсионного люминофора он содержит наноаморфный сложный силикат редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26⋅(8,5–10% мас.), а в качестве органической добавки – диметилглицеролаты кремния состава (CH3)2Si(C3H7O3)2⋅xC3H8O3, где 0,25 ≤ х ≤ 0,40, (остальное до 100% мас.). Технический результат: предложенный биомедицинский материал обеспечивает улучшение визуализации патологических клеток биологической ткани за счет усиления свечения красной компоненты излучения. 3 пр.

 

Изобретение относится к области медицины, а именно к способу диагностики патологий в биологических тканях, в частности при онкологических заболеваниях.

Известен апконверсионный люминофор на основе фторапатита, допированного иттербием и гольмием, состава (CaYbHoNa2)(PO4)6F2, который потенциально может найти применение в биомедицине. При этом используется процесс апконверсионной фотолюминесценции для визуализации клеток путем фиксации их люминесценции после проникновения в них кристаллов фторапатита. При возбуждении ИК-излучением с длиной волны 980 нм кристаллы, в основном, проявляют две полосы люминесценции близкой интенсивности: зеленую полосу с центром при 543 нм и красную при 654 нм. Для визуализации клетки используют гидрофильный раствор декстрана с целью прививки кристаллов фторапатита (Xiyu Li, Jingxian Zhu, Zhentao Man, Yingfang Ao, Haifeng Chen. Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for applications //SCIENTIFIC REPORTS | 4 : 4446 | DOI: 10.1038/srep04446).

Недостатком известного материала является наличие двух полос люминесценции (зеленой и красной), что ухудшает идентификацию биоизображений.

Известен материал на основе апконверсионного люминофора, модифицированного цистеином, состава NaYF4, допированного иттербием и эрбием или иттербием и туллием. Спектр наночастиц в культуральном растворе (возбуждение излучением с длиной волны 980 нм) состоит из красной компоненты (630 - 680 нм) и зеленой (525 - 560 нм). При этом отношение интенсивности красной компоненты к интенсивности зеленой компоненты составляет 1200 – 1300 % (Appl. CN 103540311; МПК B82Y 20/00, 30/00, 40/00; C09K 11/02, 85; G01N 21/64; 2014 год) (прототип).

Однако недостатком известного материала является недостаточно большая разница между интенсивностью красной и зеленой компонентами, что ухудшает визуализацию патологий в биологических тканях, в частности опухолевых новообразований.

Таким образом, перед авторами стояла задача разработать биомедицинский материал на основе апконверсионного люминофора, имеющего высокую интенсивность свечения преимущественно красного цвета при возбуждении излучением 980 нм.

Поставленная задача решена в предлагаемом биомедицинском материале для диагностики патологий в биологических тканях, содержащем наноразмерный апконверсионный люминофор и органическую добавку, который содержит в качестве апконверсионного люминофора наноаморфный сложный силикат редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26, а в качестве органической добавки – демитилглицеролаты кремния состава (CH3)2Si(C3H7O3)2∙ xC3H8O3, где 0,25 ≤ х ≤ 0,40, при следующем соотношении, мас.%:

сложный силикат редкоземельных элементов - 8,5 ÷ 10;
демитилглицеролаты кремния - остальное до 100.

В настоящее время из патентной и научно-технической литературы не известен биомедицинский материал для диагностики патологий в биологических тканях, содержащий наноаморфный апконверсионный люминофор состава Sr2Y6,8YbEr0,2Si6O26, а в качестве органической добавки – демитилглицеролаты кремния состава (CH3)2Si(C3H7O3)2∙ xC3H8O3, где 0,25 ≤ х ≤ 0,40, в предлагаемом диапазоне соотношения компонентов.

В состав предлагаемого биомедицинского материала входит апконверсионный люминофор состава Sr2Y6,8YbEr0,2Si6O26 в наноаморфном состоянии с частицами размером 2.6-5.0 нм (патент RU 2626020), исследования, проведенные авторами, показали его хорошую фармакологическую и физико-химическую совместимость с органической добавкой - демитилглицеролатами кремния состава (CH3)2Si(C3H7O3)2∙ xC3H8O3(патент RU 2415144), которые благодаря наличию высокой трансдермальной проводимости обеспечивают эффективный перенос активного вещества (апконверсионного люминофора) в область патологии. Демитилглицеролаты кремния представляют собой прозрачную бесцветную вязкую жидкость, относящуюся к малотоксичным соединениям (IV класс опасности), обладающие высокой биосовместимостью с клетками, отсутствием цитотоксичности, легко пенетрируют в ткани организма. Однако, исходя из известного уровня техники, нельзя с очевидностью утверждать о возможности их использования в качестве основы в средстве, содержащем в качестве активно действующего вещества апконверсионного люминофора состава Sr2Y6,8YbEr0,2Si6O26. Исследования, проведенные авторами, позволили выявить при использовании предлагаемого биомедицинского материала возможность получения синергетического, а не аддитивного эффекта. Поскольку в апконверсионном нанолюминофоре состава Sr2Y6,8YbEr0,2Si6O26 происходят нелинейные процессы возбуждения свечения, при этом при прохождении лазерного излучения через органическую среду происходит небольшое уменьшение его мощности. В результате из-за нелинейности процессов возбуждения нанолюминофора наблюдается уменьшение интенсивности зеленой компоненты и относительное увеличение интенсивности красной, и, как следствие, увеличивается отношение интенсивности красной компоненты к интенсивности зеленой компоненты. Экспериментальным путем были установлены пределы количественного содержания компонентов, обеспечивающие проявление максимального эффекта визуализации. Так, при увеличении содержания апконверсионного люминофора более 10 мас.% наблюдается его выпадение в осадок. При уменьшении содержания апконверсионного люминофора менее 8.5 мас.% наблюдается уменьшение интенсивности и увеличение полуширины спектральной линии красной компоненты. Таким образом, сочетанное действие компонентов предлагаемого биомедицинского материала обеспечивает получение синергетического эффекта, а именно улучшение визуализации патологии органа за счет усиление красной компоненты свечения.

Предлагаемый биомедицинский материал может быть получен следующим образом. Берут наноаморфный порошок с размером частиц 2.6-5.0 нм сложного силиката редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26, помещают во флакон с диметилглицеролатом кремния состава (CH3)2Si(C3H7O3)2∙ xC3H8O3, где 0,25 ≤ х ≤ 0,40, в виде прозрачной бесцветной вязкой жидкости при следующем соотношении компонентов, мас. %: наноаморфный порошок с частицами размером 2.6-5.0 нм состава Sr2Y6,8YbEr0,2Si6O26 – 8.5 ÷ 10, диметилглицеролаты кремния – остальное до 100, и тщательно перемешивают до получения однородной массы.

Люминесценцию полученного материала возбуждают лазером с длиной волны 980 нм. Спектры люминесценции получают на спектрометре и регистрируют с помощью фотоэлектронного умножителя. Возможность визуализации патологических клеток биологических тканей подтверждена исследованием культурального раствора, содержащего клетки Saos.

Получение и использование предлагаемого биомедицинского материала иллюстрируется следующими примерами.

Пример 1. В стеклянный сосуд помещают 9.0 г диметилглицеролатов кремния состава (CH3)2Si(C3H7O3)2∙ 0.25C3H8O (90 мас. %) и 1.0 г (10 масс. %) нанаморфного порошка силиката Sr2Y6,8YbEr0.2Si6O26 с размером частиц 5.0 нм и тщательно перемешивают до получения однородной массы. Получают средство состава, мас. %:. наноаморфный сложный силикат редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26 – 10; демитилглицеролаты кремния состава (CH3)2Si(C3H7O3)2∙ 0.25C3H8O3 - 90. Затем проверяют апконверсионную фотолюминесценцию. Свечение возбуждают лазером с длиной волны 980 нм. Спектр люминесценции состоит из красного излучения (630 − 680 нм) и зеленого излучения (520 − 570 нм). При этом отношение интенсивности красного излучения к интенсивности зеленого составляет 1600 %.

Пример 2. В стеклянный сосуд помещают 9.15 г диметилглицеролатов кремния состава (CH3)2Si(C3H7O3)2∙ 0.40C3H8O (91.5 мас. %) и 0.85 г (8.5 масс. %) нанаморфного порошка силиката Sr2Y6,8YbEr0.2Si6O26 с размером частиц 4.0 нм и тщательно перемешивают до получения однородной массы. Получают средство состава, мас. %:. наноаморфный сложный силикат редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26 – 8.5; демитилглицеролаты кремния состава (CH3)2Si(C3H7O3)2∙ 0.40C3H8O3 – 91.5. Затем проверяют апконверсионную фотолюминесценцию полученной суспензии. Свечение возбуждают лазером с длиной волны 980 нм. Спектр люминесценции состоит из красного излучения (630 − 680 нм) и зеленого излучения (520 − 570 нм). При этом отношение интенсивности красного излучения к интенсивности зеленого составляет 1400 %.

Пример 3. В культуральный флакон помещают суспензию, содержащую клетки Saos и биомедицинский материал состава в соответствие с примером 1. Полученный суспензию инкубируют при температуре 37 ºС в течение 1 суток после чего отмывают солевым раствором. Затем проверяют фотолюминесценцию клеток. Свечение возбуждают лазером с длиной волны 980 нм. Визуально свечение состоит из красного излучения (630 − 680 нм), что указывает на захват клетками наночастиц активного вещества - сложного силиката состава Sr2Y6,8YbEr0,2Si6O26,.

Таким образом, авторами предлагается биомедицинский материал для диагностики патологий в биологических тканях, обеспечивающий улучшение визуализации патологических клеток биологической ткани за счет усиления свечения красной компоненты излучения.

Биомедицинский материал для диагностики патологий в биологических тканях, содержащий наноразмерный апконверсионный люминофор и органическую добавку, отличающийся тем, что он содержит в качестве апконверсионного люминофора наноаморфный сложный силикат редкоземельных элементов состава Sr2Y6,8YbEr0,2Si6O26, а в качестве органической добавки – диметилглицеролаты кремния состава (CH3)2Si(C3H7O3)2⋅xC3H8O3, где 0,25 ≤ х ≤ 0,40, при следующем соотношении, мас.%:

сложный силикат редкоземельных элементов 8,5 - 10
диметилглицеролаты кремния остальное до 100



 

Похожие патенты:

Изобретение может быть использовано в позитронно-эмиссионных томографах, в геофизических исследованиях скважин, а также в системах безопасности. Сцинтиллятор имеет длину волны излучения больше 200 нм, максимум излучения при 320-460 нм и химическую формулу AD(BO3)X2:E, где А - Ва, Са, Sr, La или их сочетание, D - Al, Ga, Mg или их сочетание, X - F, Cl или их сочетание, Е - Се или сочетание Се и Li.
Изобретение может быть использовано в системах визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения. Сначала готовят три исходных раствора I, II, III.

Изобретение относится к технологии получения сцинтилляционного кристаллического материала для детекторов излучения, используемых для приборов позитронно-эмиссионной томографии (ПЭТ), рентгеновской компьютерной томографии (КТ), различных радиметров в области физики высоких энергий, ресурсодобывающих приборов.
Изобретение относится к химической промышленности и может быть использовано для создания результирующего белого света в светодиодах. В вакуумно-газовом перчаточном боксе смешивают путем многократного просева в нейтральной атмосфере исходные сухие порошки: нитрид кальция Са3N2, нитрид стронция Sr3N2, нитрид алюминия AlN, нитрид кремния Si3N4 и фторид европия в стехиометрическом соотношении для получения состава с общей формулой Ca1-x-ySrxEuyAlSiN3, где х=0,68-0,97; у=0,0009-0,027.
Изобретение может быть использовано в биомедицине для визуализации кровеносных сосудов, в электронике для ап-конверсионных преобразователей в ячейках кремниевых солнечных батарей.

Изобретение может быть использовано при изготовлении светоизлучающих приборов, испускающих ультрафиолетовое излучение. Люминесцентный материал имеет химическую формулу (Y1-xLux)9LiSi6O26:Ln, где Ln - трехвалентный редкоземельный металл, выбранный из Pr, Nd или их смеси; 0,0≤x≤1,0.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона в системах светодиодов белого света (WLED) и оптических дисплеях. Люминофор синего свечения представляет собой силикат редкоземельных элементов в наноаморфном состоянии состава Ca2Gd8(1-x)Eu8xSi6O26, где 0,001≤х≤0,5, характеризующийся широкой полосой синего излучения с максимумом при 455 нм, полушириной 77 нм, интенсивностью 14000-14263 отн.

Изобретение относится к области светотехники и может быть использовано при изготовлении светодиодов и систем преобразования света. Нитридный люминофор с красным свечением, возбуждаемый излучением в диапазоне длин волн 200-570 нм, имеет общую формулу Lis(M(1-x)Eux)1MgmAlnSipNq, где M=Sr, Ca, Ba, взятые отдельно или их смесь, 0,045≤s≤0,60; 0,005≤х≤0,12; 0≤m≤0,12; 0≤n≤1,0; 1,0≤р≤2,40; 3,015≤q≤4,20; причём для всех композиций 2,0≤р+n≤2,40 и q≠4.

Изобретение относится к защитному признаку для защиты ценных документов, прежде всего для обеспечения их подлинности. Защитный признак включает люминесцентный пигмент, который имеет неорганическую кристаллическую решетку, легированную люминофором, выбранным из редкоземельных ионов эрбия, гольмия, неодима, тулия, иттербия, и который для излучения люминесцентного света выполнен с возможностью оптического возбуждения.

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, содержащим гадолиний, иттрий, церий, бериллий и солегированным не менее чем одним элементом второй группы из Mg, Са, Sr.
Наверх