Способ производства капсулированной формы антимикробного препарата для терапии заболеваний желудочно-кишечного тракта

Настоящее изобретение относится к способу производства капсулированной формы антимикробного препарата для терапии заболеваний желудочно-кишечного тракта, характеризующемуся тем, что проводят культивирование бактерий, выделенных из сапропеля, на агаризованной питательной среде состава (г/л): пептический перевар животной ткани - 6,0, гидролизат казеина - 4,0, дрожжевой экстракт - 3,0, мясной экстракт - 1,5, глюкоза - 1,0, агар-агар - 15,0, при температуре 37°С до достижения концентрации бактерий 2,0⋅106 КОЕ/мл, отделение биомассы от питательной среды центрифугированием, сублимационную сушку надосадочной жидкости и последующее инкапсулирование полученного сухого остатка в оболочку на основе растительных полисахаридов, причем центрифугирование осуществляют при 3900 об/мин в течение 20 мин, сублимационную сушку надосадочной жидкости - при вакууме 0,05 мБар и температуре -20°С, а используемая оболочка капсулы содержит каррагинан, агар-агар, глицерин и воду. Настоящее изобретение обеспечивает разработку нового способа производства капсулированной формы антимикробного препарата на основе биомассы бактерий, изолированных из сапропеля, для терапии заболеваний желудочно-кишечного тракта, имеющих микробиологическую природу. 3 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к биотехнологии и фармацевтике, а именно к получению капсулированной формы антимикробного препарата на основе биомассы бактерий, выделенных из сапропеля, для терапии инфекционных заболеваний желудочно-кишечного тракта.

Антибиотикорезистентность (нечувствительность или устойчивость возбудителей инфекционных болезней к назначаемым для борьбы с ними антибиотикам) - тема, волнующая сегодня все человечество [1]. Антибиотикорезистентность определена ВОЗ как глобальная проблема, требующая незамедлительного решения [2]. Европейская сеть по эпиднадзору за устойчивостью к антимикробным препаратам («EARS-Net») ежегодно регистрирует до 400000 случаев развития полирезистентных инфекций, селекция которых вызвана, прежде всего, нерациональным использованием антибиотиков и антисептиков. Многие исследователи отмечают, что если существующие негативные тенденции не изменятся, то медицина столкнется с проблемой полувековой давности, когда еще отсутствовали антибиотики [3-7].

Согласно «Toronto declaration to combat antimicrobial resistance)) (Toronto, 2000) и «Глобальной стратегии ВОЗ по сдерживанию резистентности к антимикробным препаратам» (Женева, 2001) одним из путей преодоления лекарственной устойчивости выступает разработка и внедрение в практику новых противомикробных средств.

В поисках решения этой задачи возрос интерес к изучению нового класса антимикробных пептидов, продуцируемых эукариотическими клетками, а также к исследованиям большого числа антимикробных субстанций бактериального происхождения. Среди последних особое место занимают бактериоцины - рибосомально синтезируемые клеткой низкомолекулярные (<10,0 кДа), термоустойчивые, чаще всего катионной природы гидрофобные пептиды [8-9].

В настоящее время в научной литературе имеется значительное количество публикаций, посвященных вопросам изучения и биотехнологического производства различных видов биологически активных веществ, продуцируемых преимущественно спорообразующими микроорганизмами вида Bacillus subtilis, а также рядом штаммов молочнокислых бактерий [10].

Из уровня техники известна фармацевтическая композиция антибиотиков и пребиотиков для профилактики и лечения дисбиозов в процессе антибактериальной терапии (патент РФ №2325187, опубл. 27.05.2008), содержащая (по первому варианту) антибиотик и пребиотик -олигосахарид, выбранный из группы: фруктоолигосахариды, галактоолигосахариды, ксилоолигосахариды, мальтоолигосахариды и изомальтоолигосахариды со степенью полимеризации от 2 до 10, с размером частиц до 0,3 мм и чистотой не менее 95%, а антибиотик - с размерами частиц от 20 до 200 мкм; антибиотик и олигосахарид включены в массовом соотношении от 1:1 до 1:100 соответственно; по второму варианту фармацевтическая композиция содержит антибиотик в виде порошка с размерами частиц от 20 до 200 мкм, выбранный из группы: бета-лактамы, включая комбинации бета-лактамов с ингибиторами бактериальных беталактамаз; азалиды, фторхинолоны, амфениколы, гликопептиды, ансамицины, нитрофураны, производные фосфоновой кислоты, циклосерин, триметоприм, а в качестве пребиотика - олигосахарид в виде порошка со степенью полимеризации от 2 до 10, с размером частиц до 0,3 мм, чистотой не менее 95%; при этом антибиотик и олигосахарид включены в состав композиции в массовом соотношении от 1:1 до 1:100, соответственно.

Недостатком известного способа получения фармацевтической композиции является отсутствие процесса помола действующих веществ с целью повышения их антибактериальной активности после высушивания, так как процесс подсушки композиции до 2-3% влажности обязательно приведет к агрегации частиц антибиотика и олигосахарида с соответствующей потерей их дисперсности, а, следовательно, и активности.

Также известно средство, обладающее антибактериальной активностью (патент РФ №1779377, опубл. 07.12.1992), содержащее живую культуру ацидофильных лактобактерий в сочетании с комплексом сывороточных иммуноглобулинов, взятых в одинаковых весовых частях, при концентрации жизнеспособных микробных клеток 107-108 на массу 0,1 г и процентном соотношении компонентов в комплексе иммуноглобулина G:M:A, равном (55-60):(20-25):(15-20), для получения которого сухую микробную массу соединяют с сухой биомассой КИП в соотношении 1:1 и используют для приготовления оральной или ректальной формы.

В качестве недостатка известного изобретения следует признать низкую антибактериальную активность препарата.

Описана метабиотическая композиция для обеспечения колонизационной резистентности микробиоценоза кишечника человека (патент РФ №2589818, опубл. 10.07.2016), выполненная в твердой дозированной форме в виде капсул, количество ингредиентов в одной капсуле составляет, масс. %: стерилизованная высушенная культуральная жидкость, содержащая метаболиты пробиотического штамма бактерий Bacillus subtilis ВКНМ. № В-2335 - 1,9; стерилизованная высушенная культуральная жидкость, содержащая метаболиты пробиотического штамма бактерий Enterococcus faecium L-3 - 4,5; стерилизованная высушенная культуральная жидкость, содержащая метаболиты пробиотического штамма бактерий Lactobacillus delbrueckii TS1-06 - 4,5; стерилизованная высушенная культуральная жидкость, содержащая метаболиты пробиотического штамма бактерий Lactobacillus fermentum TS3-06 - 4,5; цеолит - 64,3; овсяные хлопья - 20,0; стеарат кальция или аэросил - 0,3.

В качестве основного недостатка описанной композиции следует отметить многокомпонентный состав.

В ходе патентного поиска не выявлено техническое решение, принятое в качестве ближайшего аналога.

Технической задачей предлагаемого изобретения является расширение ассортимента антимикробных препаратов, нормализующих микробиоценоз кишечника, для терапии заболеваний желудочно-кишечного тракта, имеющих микробиологическую природу.

Технический результат, достигаемый при реализации заявленного изобретения, состоит в разработке нового способа производства капсулированной формы антимикробного препарата на основе биомассы бактерий, изолированных из сапропеля, для терапии заболеваний ЖКТ, имеющих микробиологическую природу.

Для достижения указанного технического результата предложено использовать разработанный способ. Согласно разработанному способу производства капсулированной формы антимикробного препарата для терапии заболеваний ЖКТ осуществляют культивирование бактерий, выделенных из сапропеля, до достижения концентрации бактерий 2,0⋅106 КОЕ/мл, после чего биомассу отделяют от питательной среды центрифугированием, полученную надосадочную жидкость сублимационно высушивают и заключают в капсулы, оболочка которых состоит из растительных полисахаридов - каррагинана и агар-агара.

В предпочтительном варианте реализации способа отбирают образцы сапропеля. Для выделения колоний бактерий отобранные образцы сапропеля измельчают в стерильных условиях и небольшой кусочек растирают на поверхности чашки Петри с агаризованной питательной средой, либо 5 г образца вносят в 5 мл жидкой питательной среды. Инкубируют чашки Петри и пробирки при температуре 37°С стационарно в течение 3 суток.

Для первичного выделения бактерий используют жидкие питательные среды. Из пробирок с видимым ростом бактерий (помутнение) и с суммарных газонов на чашках проводят истощающие рассевы. Выделенные бактерии культивируют на агаризованных питательных средах.

Культуры бактерий, выделенных из сапропеля, хранят в сублимационно-высушенном состоянии в ампулах при температуре 4±2°С не более 24 месяцев.

Согласно изобретению, капсулированную форму антимикробного препарата для терапии заболеваний ЖКТ получают следующим образом. Лиофилизированные культуры бактерий, выделенных из сапропеля, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.

По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток инкапсулируют в оболочки, состоящие из растительных полисахаридов, при следующем соотношении компонентов, масс. %:

каррагинан 5,0-10,0
агар-агар 2,5-10,0
глицерин 5,0
вода 75,0-85,0.

Изобретение иллюстрируется следующими примерами.

Пример 1

Отбирают образцы сапропеля. Для отбора проб сапропеля используют бур с пробоотборочным челноком ТБ-5, длиной 0,5 м. Пробы сапропеля отбирают послойно по 0,25 м до минерального дна. При отборе проб челнок бура погружают в залежь в открытом состоянии первоначально на 0,5 м. Поворотом ручки по часовой стрелке на 180° челнок закрывают и извлекают из залежи. Затем приводят его в горизонтальное положение, вытирают снаружи, открывают, разделяют содержимое челнока на две равные части по 0,25 м и переносят каждую часть отдельно в тару. Полость челнока после удаления пробы тщательно вытирают. Затем процесс отбора проб возобновляют с последовательным погружением бура на глубину 1,0, 1,5 м и т.д.

Для выделения колоний бактерий отобранные образцы сапропеля измельчают в стерильных условиях и небольшой кусочек (приблизительно 5 г) растирают на поверхности чашки Петри с агаризованной питательной средой состава (г/л): пептический перевар животной ткани - 6,0, гидролизат казеина - 4,0, дрожжевой экстракт - 3,0, мясной экстракт - 1,5, глюкоза - 1,0, агар-агар - 15,0; либо 5 г образца вносят в 5 мл жидкой питательной среды состава (г/л): пептический перевар животной ткани - 6,0, гидролизат казеина - 4,0, дрожжевой экстракт - 3,0, мясной экстракт - 1,5, глюкоза - 1,0. Инкубируют чашки Петри и пробирки при температуре 37°С стационарно в течение 3 суток.

Для первичного выделения бактерий используют жидкую питательную среду аналогичного состава. Из пробирок с видимым ростом бактерий (помутнение) и с суммарных газонов на чашках проводят истощающие рассевы. Выделенные бактерии культивируют на агаризованной питательной среде. Культуры бактерий, выделенных из сапропеля, хранят в сублимационно-высушенном состоянии в ампулах при температуре 4±2°С не более 24 месяцев.

Лиофилизированные культуры бактерий, выделенных из сапропеля, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.

По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток заключают в капсулы на основе растительных полисахаридов, которые получают следующим образом. Готовят смесь растительных полисахаридов (каррагинан, агар-агар), воды, а также вспомогательного компонента - пластификатора глицерина, при следующем соотношении компонентов, масс. %:

каррагинан 10,0
агар-агар 2,5
глицерин 5,0
вода 82,5.

В отмеренный объем воды комнатной температуры при постоянном перемешивании постепенно добавляют каррагинан и агар-агар, нагревают смесь до 75°С и продолжают перемешивание в течение 1 ч. После растворения полисахаридов в смесь добавляют глицерин, продолжая перемешивание в течение 30 мин.

После отключения мешалки и обогрева смесь оставляют в реакторе в течение 1,5-2 ч с подключением вакуума для удаления из массы пузырьков воздуха. Приготовленную массу передают для стабилизации в термостатирующую емкость с контролируемой температурой и выдерживают при температуре 50°С в течение 2,5 ч. Далее смесь подают на стадию капсулирования, которую осуществляют с помощью машины для изготовления капсул.

Емкость со смесью для капсулирования подключают к машине, через шланги раствор подается в боксы (температура боксов 60°С), из боксов раствор попадает на барабаны, температура которых от 18 до 22°С, где смесь желируется и формируется лента определенной толщины. Далее лента проходит через смазочные ролики, где на всю поверхность ленты наносится вазелиновое масло, затем она проходит через пресс-формы, где происходит вырубка капсул и спайка шва капсулы. Сверху через нагревательный элемент в формирующуюся капсулу подается наполнитель - лиофилизированные культуры бактерий, изолированных из донных отложений водоемов. Температура наполнителя не должна быть более 28°С.

Сформованные капсулы подаются в сушильные барабаны, где происходит первичная сушка капсул при температуре 25°С в течение 20 ч и удаление с поверхности капсул остатков вазелинового масла. Готовые капсулы сортируют на установке для сортировки капсул. Полученные капсулы раскладывают на специальные поддоны, поддоны составляют в стеки. Стеки закатываются в сушильные тоннели. Температура в тоннелях от 20 до 25°С, относительная влажность воздуха должна быть от 20 до 30%.

Сушка капсул происходит от 2 до 5 суток на барабанной установке для досушивания капсул фирмы «Sigma» (США) до достижения капсулами необходимых параметров по твердости, эластичности, весу и влажности оболочки. Высушенные капсулы передаются на стадию контроля качества и участок фасовки.

Результаты определения антагонистических свойств полученной согласно примеру 1 капсулированной формы препарата по отношению к бактериям, вызывающим заболевания ЖКТ, представлены в таблице 1.

Пример 2

Отбор образцов сапропеля и выделение из них бактерий осуществляют согласно примеру 1.

Лиофилизированные культуры бактерий, выделенных из сапропеля, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.

По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток заключают в капсулы на основе растительных полисахаридов, которые получают следующим образом. Готовят смесь растительных полисахаридов (каррагинан, агар-агар), воды, а также вспомогательного компонента - глицерина, при следующем соотношении компонентов, масс. %:

каррагинан 5,0
агар-агар 5,0
глицерин 5,0
вода 85,0.

В отмеренный объем воды комнатной температуры при постоянном перемешивании постепенно добавляют каррагинан и агар-агар, нагревают смесь до 75°С и продолжают перемешивание в течение 1 ч. После растворения полисахаридов в смесь добавляют глицерин, продолжая перемешивание в течение 30 мин.

После отключения мешалки и обогрева смесь оставляют в реакторе в течение 1,5-2 ч с подключением вакуума для удаления из массы пузырьков воздуха. Приготовленную массу передают для стабилизации в термостатирующую емкость с контролируемой температурой и выдерживают при температуре 50°С в течение 2,5 ч. Далее смесь подают на стадию капсулирования, которую осуществляют с помощью машины для изготовления капсул.

Емкость со смесью для капсулирования подключают к машине, через шланги раствор подается в боксы (температура боксов 60°С), из боксов раствор попадает на барабаны, температура которых от 18 до 22°С, где смесь желируется и формируется лента определенной толщины. Далее лента проходит через смазочные ролики, где на всю поверхность ленты наносится вазелиновое масло, затем она проходит через пресс-формы, где происходит вырубка капсул и спайка шва капсулы. Сверху через нагревательный элемент в формирующуюся капсулу подается наполнитель - лиофилизированные культуры бактерий, изолированных из донных отложений водоемов. Температура наполнителя не должна быть более 28°С.

Сформованные капсулы подаются в сушильные барабаны, где происходит первичная сушка капсул при температуре 25°С в течение 20 ч и удаление с поверхности капсул остатков вазелинового масла. Готовые капсулы сортируют на установке для сортировки капсул. Полученные капсулы раскладывают на специальные поддоны, поддоны составляют в стеки. Стеки закатываются в сушильные тоннели. Температура в тоннелях от 20 до 25°С, относительная влажность воздуха должна быть от 20 до 30%.

Сушка капсул происходит от 2 до 5 суток на барабанной установке для досушивания капсул фирмы «Sigma» (США) до достижения капсулами необходимых параметров по твердости, эластичности, весу и влажности оболочки. Высушенные капсулы передаются на стадию контроля качества и участок фасовки.

Результаты определения антагонистических свойств полученной согласно примеру 2 капсулированной формы препарата по отношению к бактериям, вызывающим заболевания ЖКТ, представлены в таблице 1.

Пример 3

Отбор образцов сапропеля и выделение из них бактерий осуществляют согласно примеру 1.

Лиофилизированные культуры бактерий, выделенных из сапропеля, восстанавливают путем переноса содержимого ампул в пробирки с жидкой питательной средой. Далее осуществляют процесс ферментации при температуре 37°С в течение 16-24 ч до достижения концентрации бактерий 2,0⋅106 КОЕ/мл.

По окончании культивирования удаляют клеточный дебрис, после чего культуры центрифугируют при 3900 об/мин в течение 20 мин. Надосадочную жидкость переносят в сосуды для лиофилизации и упаривают досуха на сублимационной сушилке Labconco "Triad" при вакууме 0,05 мБар и температуре -20°С. Сухой остаток заключают в капсулы на основе растительных полисахаридов, которые получают следующим образом. Готовят смесь растительных полисахаридов (каррагинан, агар-агар), воды, а также вспомогательного компонента - глицерина, при следующем соотношении компонентов, масс. %:

каррагинан 10,0
агар-агар 10,0
глицерин 5,0
вода 75,0.

В отмеренный объем воды комнатной температуры при постоянном перемешивании постепенно добавляют каррагинан и агар-агар, нагревают смесь до 75°С и продолжают перемешивание в течение 1 ч. После растворения полисахаридов в смесь добавляют глицерин, продолжая перемешивание в течение 30 мин.

После отключения мешалки и обогрева смесь оставляют в реакторе в течение 1,5-2 ч с подключением вакуума для удаления из массы пузырьков воздуха. Приготовленную массу передают для стабилизации в термостатирующую емкость с контролируемой температурой и выдерживают при температуре 50°С в течение 2,5 ч. Далее смесь подают на стадию капсулирования, которую осуществляют с помощью машины для изготовления капсул.

Емкость со смесью для капсулирования подключают к машине, через шланги раствор подается в боксы (температура боксов 60°С), из боксов раствор попадает на барабаны, температура которых от 18 до 22°С, где смесь желируется и формируется лента определенной толщины. Далее лента проходит через смазочные ролики, где на всю поверхность ленты наносится вазелиновое масло, затем она проходит через пресс-формы, где происходит вырубка капсул и спайка шва капсулы. Сверху через нагревательный элемент в формирующуюся капсулу подается наполнитель - лиофилизированные культуры бактерий, изолированных из донных отложений водоемов. Температура наполнителя не должна быть более 28°С.

Сформованные капсулы подаются в сушильные барабаны, где происходит первичная сушка капсул при температуре 25С в течение 20 ч и удаление с поверхности капсул остатков вазелинового масла. Готовые капсулы сортируют на установке для сортировки капсул. Полученные капсулы раскладывают на специальные поддоны, поддоны составляют в стеки. Стеки закатываются в сушильные тоннели. Температура в тоннелях от 20 до 25°С, относительная влажность воздуха должна быть от 20 до 30%.

Сушка капсул происходит от 2 до 5 суток на барабанной установке для досушивания капсул фирмы «Sigma» (США) до достижения капсулами необходимых параметров по твердости, эластичности, весу и влажности оболочки. Высушенные капсулы передаются на стадию контроля качества и участок фасовки.

Результаты определения антагонистических свойств полученной согласно примеру 3 капсулированной формы препарата по отношению к бактериям, вызывающим заболевания ЖКТ, представлены в таблице 1.

Из таблицы 1 следует, что капсулированные формы препарата на основе биомассы бактерий, выделенных из сапропеля, полученные согласно трем примерам, проявляют высокую антимикробную активность по отношению к бактериям - возбудителям заболеваний ЖКТ (Escherichia coli, Helicobacterpylori, Campylobacterjejuni), что позволяет использовать их для терапии таких заболеваний, как диарея, гастроэнтериты, гастриты, дуодениты, кампилобактериоз.

Таким образом, техническим результатом заявленного способа является разработка нового способа производства капсулированной формы антимикробного препарата на основе биомассы бактерий, изолированных из сапропеля, для терапии заболеваний ЖКТ, имеющих микробиологическую природу.

Источники информации:

1. Намазанова-Баранова, Л.С. Антибиотикорезистентность в современном мире / Л.С. Намазанова-Баранова, А.А. Баранов // Педиатрическая фармакология. 2017. Т. 14. №5. С. 341-354.

2. The WHO policy package to combat antimicrobial resistance // Bulletin of the World Health Organization. 2011. №89. P. 390-392.

3. Козлов, P.C. Клиническое значение резистентности грамположительных бактерий / P.C. Козлов // Инфекции в хирургии. 2009. Т. 7. С. 3-10.

4. Политика применения антибиотиков в хирургии / под ред. Л.С. Страчунского, Ж.К. Пешере, П.Э. Дедлинджер // Клиническая микробиология и антимикробная химиотерапия. 2003. Т. 5. №4. С.302-317.

5. Kapil, A. The challenge of antibiotic resistance: need to contemplate / A. Kapil // Indian J. Med. Res. 2005. Vol. 121. №2. P. 83-91.

6. Антибиотики в хирургии и интенсивной терапии / Б.З. Белоцерковский и др. // Инфекции в хирургии. 2009. Т. 7. №2. С. 70-76.

7. Бархатова, Н.А. Динамика резистентности возбудителей локальных и генерализованных форм инфекций мягких тканей / Н.А. Бархатова // Казанский медицинский журнал. 2009. Т. 90. №3. С. 385-390.

8. Ennahar, S. Class IIa bacteriocins: biosynthesis, structure and activity / S. Ennahar, T. Sashihara, K. Sonomoto, A. Ishizaki // FEMS Microbiology Reviews. 2000. Vol.24. Issue 1. P. 85-106.

9. Popaganni, M. Ribosomally synthezed peptides with antimicrobial properties: biosynthesis, structure, function, and applications / M. Popaganni // Biotechnol. Adv. 2003. Vol.21. №6. P. 465-499.

10. Забокрицкий, Н.А. Биологически активные вещества, синтезируемые пробиотическими микроорганизмами родов Bacillus и Lactobacillus // Журнал научных статей «Здоровье и образование в XXI веке. 2015. Т. 17. №3.

1. Способ производства капсулированной формы антимикробного препарата для терапии заболеваний желудочно-кишечного тракта, характеризующийся тем, что проводят культивирование бактерий, выделенных из сапропеля, на агаризованной питательной среде состава (г/л): пептический перевар животной ткани - 6,0, гидролизат казеина - 4,0, дрожжевой экстракт - 3,0, мясной экстракт - 1,5, глюкоза - 1,0, агар-агар - 15,0, при температуре 37°С до достижения концентрации бактерий 2,0⋅106 КОЕ/мл, отделение биомассы от питательной среды центрифугированием, сублимационную сушку надосадочной жидкости и последующее инкапсулирование полученного сухого остатка в оболочку на основе растительных полисахаридов, причем центрифугирование осуществляют при 3900 об/мин в течение 20 мин, сублимационную сушку надосадочной жидкости - при вакууме 0,05 мБар и температуре -20°С, а используемая оболочка капсулы содержит каррагинан, агар-агар, глицерин и воду.

2. Способ по п. 1, отличающийся тем, что в состав оболочки капсулы входят растительные полисахариды и пластификатор глицерин при следующем соотношении компонентов, мас.%:

Каррагинан 10,0
Агар-агар 2,5
Глицерин 5,0
Вода 82,5

3. Способ по п. 1, отличающийся тем, что в состав оболочки капсулы входят растительные полисахариды и пластификатор глицерин при следующем соотношении компонентов, мас.%:

Каррагинан 5,0
Агар-агар 5,0
Глицерин 5,0
Вода 85,0

4. Способ по п. 1, отличающийся тем, что в состав оболочки капсул входят растительные полисахариды и пластификатор глицерин при следующем соотношении компонентов, мас.%:

Каррагинан 10,0
Агар-агар 10,0
Глицерин 5,0
Вода 75,0



 

Похожие патенты:

Настоящее изобретение относится к соединению формулы I: Iили его фармацевтически приемлемой соли. В формуле I: представляет собой 3-7-членное гетероциклическое кольцо, имеющее 1-3 гетероатома, независимо выбранных из азота или кислорода; каждый Ra независимо представляет собой C1-C3 алкил, -(CH2)-циклоалкил или -C(O)C1-C3 алкил; Rb представляет собой -ОН или C1-C3 алкил; или Rb отсутствует; кольцо X представляет собой фенил; R1 представляет собой галогеналкил; R2 представляет собой водород; R3 представляет собой C1-C6 алкил или C2-C6 алкенил, каждый необязательно и независимо замещен 1-3 группами, независимо выбранными из -OH и галогена; R4 представляет собой водород; и p равно 0, 1, 2 или 3.

Изобретение относится к применению соединения формулы (I) или его диастереомера, энантиомера, соли, сольвата или сольвата солей, где R1 представляет собой C1-C6-алкил, где C1-C6-алкильная группа является незамещенной или моно- или полизамещенной одинаково или по-разному посредством галогена, гидроксила, незамещенного или моно- или поли-галоген-замещенного С3-С6-циклоалкила, или группы R6, R7SO2, R7 SO или R8O, или группу, выбранную из: , R2 и R3 всегда имеют одно и то же определение и оба представляют собой или водород, или C1-С6-алкил; R4 представляет собой галоген, циано, незамещенный или однократно или многократно одинаково или по-разному замещенный C1-С6-алкил или незамещенный или однократно или многократно одинаково или по-разному замещенный С3-С6-циклоалкил, и заместители выбраны из группы галогена и гидроксила; R5 представляет собой водород, галоген или незамещенный или моно- или поли-галоген-замещенный C1-С6-алкил; R6 представляет собой незамещенный или моно- или ди-метил-замещенный моноциклический насыщенный гетероцикл с 4-6 кольцевыми атомами, который содержит гетероатом или гетерогруппу из группы О, S, SO и SO2; R7 представляет собой С1-С6-алкил, где С1-С6-алкильная группа является незамещенной или моно- или полизамещенной одинаково или по-разному посредством галогена, гидроксила или С3-С6-циклоалкила; или R7 представляет собой С3-С6-циклоалкил; R8 представляет собой С1-С6-алкил, где С1-С6-алкильная группа является незамещенной или моно- или полизамещенной одинаково или по-разному посредством галогена.

Изобретение относится к соединениям общей формулы (IA) или их фармацевтически приемлемым стереоизомерам, которые обладают противовоспалительными свойствами. В формуле (IA) R1A и R2A представляют независимо друг от друга Н, при условии, что R1A и R2A оба не являются атомом водорода, бутильную группу, С7-С30 алкильную группу, бутильную или С7-C24 алкильную группу, ковалентно связанную с С6-С18 арильной группой, или C6-C18 арильную группу, ковалентно связанную с бутильной или С7-С24 алкильной группой, или С7-С18 арильную группу; Q1, Q3, Q4 и Q5 представляют независимо друг от друга ОН группу или кофеоильную группу формулы (VI), при условии, что по меньшей мере один из этих радикалов не является ОН группой, и при условии, что соединения, в которых либо Q3, либо Q5 представляет собой кофеоильную группу, a Q1, Q4 и другой из Q3 или Q5 представляют собой ОН группу, исключены.

Группа изобретений относится к антителу к полипептиду регуляторной легкой цепи миозина (Myl)9 или его Myl9-связывающему фрагменту и их применению. Предложено антитело к Myl9 или его Myl9-связывающий фрагмент, содержащие (a) CDR1 тяжелой цепи, состоящую из пептида, представленного аминокислотной последовательностью SEQ ID NO: 28, (b) CDR2 тяжелой цепи, состоящую из пептида, представленного аминокислотной последовательностью SEQ ID NO: 30, (c) CDR3 тяжелой цепи, состоящую из пептида, представленного аминокислотной последовательностью SEQ ID NO: 32, (d) CDR1 легкой цепи, состоящую из пептида, представленного аминокислотной последовательностью SEQ ID NO: 33, (e) CDR2 легкой цепи, состоящую из пептида, представленного аминокислотной последовательностью SEQ ID NO: 34 и (f) CDR3 легкой цепи, состоящую из пептида, представленного аминокислотной последовательностью SEQ ID NO: 35.

Настоящее изобретение относится к области органической химии, а именно к соединению формулы I ,или его фармацевтически приемлемой соли. В формуле I каждый R1 независимо представляет собой галоген, -CN, -C1-3алкил или -OC1-3алкил, при этом алкил C1-3алкила и OC1-3алкила замещен 0-3 атомами F; m равно 0, 1, 2 или 3; каждый R2 независимо представляет собой F или Cl; p равно 0 или 1; каждый R3 независимо представляет собой F, -OH, -C1-3алкил или -C3-4циклоалкил или 2 R3 могут циклизоваться вместе с образованием -C3-4спироциклоалкила, где указаный -С1-3алкил и -C3-4циклоалкил могут быть замещены в зависимости от валентности 0-3 атомами F и 0-1 -OH; q равно 0, 1 или 2; Y представляет собой CH или N; R4 представляет собой -C1-3алкил, -C0-3алкилен-C3-6циклоалкил, -C0-3алкилен-R5 или C1-3алкилен R6, где указанный алкил может быть замещен в зависимости от валентности 0-3 заместителями, независимо выбранными из 0-3 атомов F и 0-1 заместителя, выбранного из C0-1алкилен ORO, и где указанный циклоалкил может быть независимо замещен в зависимости от валентности 0-2 заместителями, независимо выбранными из 0-2 атомов F и 0-1 заместителя, выбранного из C0-1алкилен ORO; R5 представляет собой 4-6-членный гетероциклоалкил (где указанный гетероциклоалкил может содержать от 1 до 2 гетероатомов, выбранных из О и/или N), где указанный гетероциклоалкил может быть замещен в зависимости от валентности 0-2 заместителями, независимо выбранными из: 0-1 оксо (=O) и 0-2 заместителей, независимо выбранных из -C1-3алкила и -OC1-3алкила, при этом алкил С1-3алкила и -OC1-3алкила может быть замещен в зависимости от валентности 0-3 заместителями, независимо выбранными из: 0-1 -ORO; R6 представляет собой 5-6-членный гетероарил (где указанный гетероарил может содержать от 1 до 3 гетероатомов, выбранных из О и/или N), где указанный гетероарил может быть замещен в зависимости от валентности 0-2 заместителями, независимо выбранными из: 0-2 галогенов и 0-2 -C1-3алкилов, где алкил может быть замещен в зависимости от валентности 0-3 заместителями, независимо выбранными из: 0-1 -ORO; каждый RO независимо представляет собой H или -C1-3алкил; Z1 представляет собой СН или N; Z2 и Z3 каждый независимо представляет собой -CRZ или N, при условии, что когда Z1 или Z3 представляет собой N, Z2 представляет собой -CRZ; и каждый RZ независимо представляет собой H, F, Cl или -CH3.

Изобретение относится к ветеринарии, а именно к способу нормализации пищеварения у животных. Способ нормализации пищеварения у животных путем введения парентерально панкреатических ферментов, причем в качестве ферментов используют панкреатический сок животных, который вводят в дозе 0,1 мл на 1 кг живой массы, предварительно разбавляя физиологическим раствором 1:10, применяя 1 раз в 7 суток.

Изобретение относится к композиции для лечения или предупреждения желудочно-кишечного расстройства. Предложена композиция, содержащая комбинацию штаммов Lactobacillus, выбранных из L.

В данном документе описываются фармацевтические композиции для перорального введения никотинамида или комбинации никотинамида и месалазина, а также способы получения таких фармацевтических композиций и терапевтические способы с их применением.

Настоящее изобретение относится к области иммунологии. Предложены моноклональные антитела против DNAM-1 человека или их фрагменты, нуклеиновая кислота, вектор экспрессии, клетка-хозяин и фармацевтическая композиция.

Настоящее изобретение относится к области биотехнологии, конкретно к новому пептидному ингибитору рецептора интерлейкина-23 (IL-23), и может быть использовано в медицине.
Изобретение относится к области биотехнологии, а именно к консервации донорского сердца. Способ включает канюлирование аорты сердца, находящегося в охлажденном до +2-4°С растворе Кребса-Хензелайта, насыщенном карбогеном (95% О2 + 5% СО2), располагая дистальный конец канюли выше уровня отхождения устьев коронарных артерий.
Наверх