Способ получения порошка, содержащего однофазный высокоэнтропийный карбид состава ti-nb-zr-hf-ta-c с кубической решеткой

Изобретение относится к способу получения порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой, и может быть использовано для производства тугоплавких материалов. Осуществляют перемешивание порошков оксида титана TiO2, оксида ниобия Nb2O5, оксида циркония ZrO2, оксида гафния HfO2, оксида тантала Та2O5 и рентгеноаморфного углерода, используемых в эквимолярном соотношении, в шаровой мельнице в течение 2 ч. Размещают полученную порошковую смесь в полости графитовой емкости в виде графитового стакана, являющегося катодом, подвергают воздействию дугового разряда постоянного тока в воздушной среде в полости катода путем соприкосновения анода в виде сплошного графитового стержня с порошковой смесью при силе тока 180–220 А в течение 25–40 с. Горение разряда прерывают отведением анода от катода. После остывания катода до комнатной температуры в воздушной среде полученный порошок, включающий спеки, извлекают из полости катода, перемалывают в агатовой ступке до однородного состояния. Закладывают перемолотый порошок в полость катода и во второй раз подвергают упомянутому воздействию дугового разряда. Затем горение разряда прерывают. После остывания катода до комнатной температуры в воздушной среде полученный порошок, включающий спеки, извлекают из полости катода и перемалывают в агатовой ступке до однородного состояния. Закладывают перемолотый порошок в полость катода и подвергают упомянутому воздействию дугового разряда. Горение разряда прерывают. После остывания катода до комнатной температуры в воздушной среде из полости катода извлекают готовый продукт. Обеспечивается получение порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой, в открытой воздушной среде и сокращение времени его получения. 5 ил., 1 табл.

 

Изобретение относится к области порошковой металлургии, а именно к получению порошков с использованием физических процессов и может быть использовано для производства тугоплавких материалов.

Известен способ получения порошка однофазного высокоэнтпропийного карбида состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой [Lun Feng, William G. Fahrenholtz, Gregory E. Hilmas, Yue Zhou. Synthesis of single-phase high-entropy carbide powders // Scripta Materialia 162 (2019) p. 90-93], согласно которому порошки оксида титана TiO2, оксида ниобия Nb2O5, оксида циркония ZrO2, оксида гафния HfO2, оксида тантала Ta2O5, а также рентгеноаморфного углерода (сажи) в эквимолярном соотношении смешивают в шаровой мельнице в течение 2 часов. Полученную смесь просеивают через сито с размером ячейки около 150 мкм, компактируют в диск с диаметром 25 мм под давлением 2 МПа. Сформованный диск закладывают в графитовый тигель, который помещают в вакуумную резистивную печь. Давление в печи поддерживают около 13,3 Па. Термообработку производят в 2 этапа: на первом этапе выдерживают температуры от 1200°С до 1600°С в течение 1 часа, на втором этапе температуру от 1700°С до 2000°С поддерживают в течение 1,5 часа. После остывания печи извлекают полученный порошок. В результате получают порошок, содержащий однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой с незначительными (от 0,2 до 5,2 мас. %) примесями кислорода.

Недостатками известного способа являются необходимость организации вакуума в печи и необходимость реализации двух этапов поддержания высоких температур в течение 2,5 часов.

Техническим результатом предложенного способа является его реализация в открытой воздушной среде и сокращение времени получения порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой.

Способ получения порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой, так же как в прототипе, включает перемешивание порошков оксида титана TiO2, оксида ниобия Nb2O5, оксида циркония ZrO2, оксида гафния HfO2, оксида тантала Ta2O5 и рентгеноаморфного углерода, взятых в эквимолярном соотношении, в шаровой мельнице в течение 2 часов, размещение смеси порошков в графитовой емкости с последующим нагревом.

Согласно изобретению смесь указанных порошков помещают на дно графитового стакана, являющегося катодом, в полости которого, в воздушной среде, генерируют дуговой разряд постоянного тока путем соприкосновения анода в виде сплошного графитового стержня с порошковой смесью при силе тока 180-220 А в течение 25-40 секунд. Затем горение разряда прерывают, отводя анод от катода. После остывания катода до комнатной температуры в воздушной среде полученный порошок, включающий спеки, извлекают из полости катода, перемалывают в агатовой ступке до однородного состояния, повторно закладывают в графитовый стакан и во второй раз подвергают аналогичному воздействию дугового разряда при силе тока 180-220 А в течение 25-40 секунд. После остывания до комнатной температуры полученный порошок, включающий спеки, извлекают, перемалывают в агатовой ступке до однородного состояния, в третий раз закладывают в полость графитового стакана и подвергают аналогичному воздействию дугового разряда при силе тока 180-220 А в течение 25-40 секунд.

При возникновении дугового разряда постоянного тока температура в зоне его формирования и горения поднимается до нескольких тысяч градусов, вследствие чего оксиды титана TiO2, циркония ZrO2, ниобия Nb2O5, гафния HfO2 и тантала Ta2O5 разлагаются на металлы и кислород. Образующийся кислород и кислород воздуха в реакционной зоне вступают в реакцию с углеродом, образуя газ монооксид углерода СО, который затем доокисляется, образуя газ диоксид углерода СО2. Образующиеся газы экранируют полость графитового стакана, являющегося катодом от кислорода воздуха, препятствуя процессам окисления металлов. В свою очередь, металлы под действием высоких температур, взаимодействуют с углеродом, образуя кубическую кристаллическую решетку карбида, содержащего в своем составе одновременно титан, цирконий, ниобий, гафний, тантал и углерод. Повторные воздействия дугового разряда постоянного тока на порошок обеспечивают равномерность распределения компонентов высокоэнтропийного карбида состава Ti-Nb-Zr-Hf-Ta-C, что, в итоге обеспечивает однофазность полученного высокоэнтропийного карбида.

Таким образом, получение предложенным способом порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой, реализовано в воздушной среде при длительности рабочего цикла в течение не более 30 мин.

На фиг. 1 представлена схема устройства для получения порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C.

На фиг. 2 представлена картина рентгеновской дифракции полученного порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C (пример 1), где обозначены соответствующие дифракционные максимумы.

На фиг. 3 представлены карты распределения химического состава отдельного кристалла однофазного высокоэнтропийного карбида состава Ti-Nb-Zr-Hf-Ta-C (пример 1), полученные с помощью растрового электронного микроскопа с энергодисперсионным анализатором.

На фиг. 4 представлена картина рентгеновской дифракции полученного порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C (пример 2), где обозначены соответствующие дифракционные максимумы.

На фиг. 5 представлена картина рентгеновской дифракции полученного порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C (пример 3), где обозначены соответствующие дифракционные максимумы.

В таблице 1 представлены условия получения порошков, содержащих однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C, а также параметры кубических решеток полученных порошков, определенные методом рентгеновской дифрактометрии.

Использовали следующие порошки: 1,0 г оксида титана TiO2, 1,2 г оксида циркония ZrO2, 1,7 г оксида ниобия Nb2O5, 2,6 г оксида гафния HfO2, 2,8 г оксида тантала Ta2O5 (все порошки с чистотой 99,5 мас. %) и 0,7 г рентгеноаморфного углерода (с чистотой 99,0 мас. %). Размер частиц у всех порошков составлял не более 10 мкм. Эти порошки, взятые в эквимолярном соотношении, с суммарной массой 10 г, в посуде из диоксида циркония с одним шариком из диоксида циркония смешивали в шаровой мельнице в течение 2 часов.

Для осуществления способа использовали устройство, которое содержит графитовый цилиндрический катод 1 (фиг. 1) в виде вертикально расположенного стакана с внешним диаметром 25 мм и внутренним диаметром 16 мм, высотой 30 мм, к стенке которого прикреплен диэлектрический держатель 2. В резьбовое отверстие диэлектрического держателя 2 вставлен винт 3, соединенный c одним концом графитового цилиндрического анода 4 в виде сплошного стержня с диаметром 8 мм. Свободный конец анода 4 расположен соосно катоду 1 с возможностью продольного перемещения в его полости. Анод 4 и катод 1 подключены к источнику постоянного тока 5 (ИПТ).

0,5 г (mисх) полученной смеси 6 порошков закладывали на дно катода 1 и равномерно распределяли по его поверхности. При включении источника постоянного тока 6 (ИПТ) между исходной смесью 6 на дне графитового катода 1, и графитовым анодом 4 возникла разность потенциалов. Вращением винта 3 перемещали анод 4 внутри полости катода 1 соосно ему до соприкосновения с порошковой смесью оксидов металлов и рентгеноаморфного углерода 6. Дуговой разряд подожгли кратковременным соприкосновением анода 4 с исходной смесью 6 при силе тока I=200 А. Затем при помощи винта 3 отвели анод 4 вертикально вверх соосно катоду 1, образуя разрядный промежуток L=0,5 мм. В процессе горения дугового разряда исходная смесь 6, а также анод 4 и катод 1 нагревались. После горения дугового разряда в течение t=30 секунд, источник постоянного тока 5 (ИПТ) отключили. После остывания анода 4 и катода 1 собрали осевший на поверхности полости катода 1 полученный порошок.

Этот порошок, включающий спеки, перемалывали в агатовой ступке до достижения однородности и снова засыпали в графитовый катод 1 и вращением винта 3 перемещали анод 4 внутри полости катода 1 до соприкосновения с порошком 6. Снова поджигали дуговой разряд кратковременным соприкосновением анода 4 с порошком при силе тока I=200 А. Вращая винт 3 отводили анод 4 вверх, образуя разрядный промежуток L=0,5 мм. После горения дугового разряда в течение t=30 секунд, источник постоянного тока 5 (ИПТ) отключали. После остывания анода 4 и катода 1 собирали осевший на поверхности полости катода 1 полученный порошок, включающий спеки, который собирали, снова перемалывали в агатовой ступке до достижения однородности и в третий раз засыпали в графитовый катод 1. Снова поджигали дуговой разряд при условиях, аналогичных первому и второму разу воздействий: сила тока I=200 А, разрядный промежуток L=0,5 мм, время горения дугового разряда t=30 секунд.

После остывания анода 4 и катода 1 собрали осевший на поверхности полости катода 1 полученный в итоге порошок и проводили его анализ на рентгеновском дифрактометре Shimadzu XRD 7000s (CuKα-излучение), а также на растровом электронном микроскопе Tescan Vega 3 SBU с приставкой энергодисперсионного анализа.

Полученные рентгеновские дифрактограммы показали наличие графита, а также наличие одной кубической фазы высокоэнтропийного карбида состава Ti-Nb-Zr-Hf-Ta-C, которой соответствуют 5 дифракционных максимумов, обозначенные на фиг. 2. По положениям дифракционных максимумов установлено, что это кубическая фаза с параметром решетки а=4,53 .

По данным растровой электронной микроскопии в полученном порошке присутствуют кристаллы с размерами до 50 мкм, которые содержат титан, ниобий, цирконий, гафний, тантал, которые, судя по картированию химического состава, распределены равномерно (фиг. 3). По данным энергодисперсионного анализа, полученным в серии из не менее 10 измерений и усредненных, кристаллы содержат титан, цирконий, ниобий, гафний, тантал и углерод.

Другие примеры получения порошков, содержащих однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой приведены в таблице 1 и на фиг. 4-5.

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ОДНОФАЗНЫЙ ВЫСОКОЭНТРОПИЙНЫЙ КАРБИД СОСТАВА Ti-Nb-Zr-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ

Таблица 1

Пример 1 Пример 2 Пример 3
mисх, г 0,5 1,0 2,0
I, А 200 180 220
t, c 30 40 25
Количество воздействий, раз 3 3 3
Параметр решетки полученной кубической фазы высокоэнтропийного карбида состава Ti-Nb-Zr-Hf-Ta-C, 4,53 4,54 4,53

Способ получения порошка, содержащего однофазный высокоэнтропийный карбид состава Ti-Nb-Zr-Hf-Ta-C с кубической решеткой, включающий перемешивание порошков оксида титана TiO2, оксида ниобия Nb2O5, оксида циркония ZrO2, оксида гафния HfO2, оксида тантала Та2O5 и рентгеноаморфного углерода, используемых в эквимолярном соотношении, в шаровой мельнице в течение 2 ч, размещение полученной порошковой смеси в графитовой емкости с последующим нагревом, отличающийся тем, что указанную порошковую смесь помещают в полость графитовой емкости в виде графитового стакана, являющегося катодом, подвергают воздействию дугового разряда постоянного тока в воздушной среде в полости катода путем соприкосновения анода в виде сплошного графитового стержня с порошковой смесью при силе тока 180–220 А в течение 25–40 с, затем горение разряда прерывают отведением анода от катода, после остывания катода до комнатной температуры в воздушной среде полученный порошок, включающий спеки, извлекают из полости катода, перемалывают в агатовой ступке до однородного состояния, закладывают перемолотый порошок в полость катода и во второй раз подвергают упомянутому воздействию дугового разряда при силе тока 180–220 А в течение 25–40 с, затем горение разряда прерывают отведением анода от катода, после остывания катода до комнатной температуры в воздушной среде полученный порошок, включающий спеки, извлекают из полости катода, перемалывают в агатовой ступке до однородного состояния, закладывают перемолотый порошок в полость катода и подвергают упомянутому воздействию дугового разряда при силе тока 180–220 А в течение 25–40 с, затем горение разряда прерывают отведением анода от катода, после остывания катода до комнатной температуры в воздушной среде из полости катода извлекают готовый продукт.



 

Похожие патенты:

Изобретение относится к производству порошков для изготовления твёрдосплавных изделий методами порошковой металлургии. Способ получения мелкодисперсного порошка тугоплавкого материала включает подачу разрушаемого электрода-анода из металла получаемого порошка к поверхности вращающегося неразрушаемого электрода-катода до появления электрической дуги между электродами с образованием и распылением расплава под действием центробежных сил до образования мелкодисперсных капель с их кристаллизацией при охлаждении в полете.

Изобретение относится к области металлургии, а именно к порошковой металлургии и способам получения металлических порошков. Способ формирования металлических порошков для аддитивных технологий в плазмотронной установке с сортировкой по массе в электрическом поле включает подачу и оплавление торца цилиндрической заготовки плазменными струями с распылением и затвердеванием расплавленных металлических частиц при полете в инертной газовой среде.

Группа изобретений относится к порошковой металлургии, а именно к способу плазменного получения порошка неорганического материала и устройству для осуществления указанного способа.

Изобретение относится к порошковой металлургии, в частности к способу получения полиметаллических нанопорошков. Исходное сырье в виде содержащей воду жидкости подготавливают путем электролитической диссоциации в проточной электролитической ячейке.
Изобретение относится к неорганической химии и может быть использовано в биологии и медицине. Сначала дистиллированную воду очищают методом двойного обратного осмоса и помещают в неё электроды, изготовленные из серебра, содержащего не более 10-4 масс.

Изобретение относится к порошковой металлургии. Способ получения коррозионностойкого порошка из стали X17 включает электроэрозионное диспергирование стали Х17 в керосине осветительном при напряжении на электродах 90...110 В, ёмкости разрядных конденсаторов 58 мкФ и частоте следования импульсов 110...120 Гц.

Изобретение относится к порошковой металлургии, в частности, к плазменному синтезу порошка со структурой ядро-оболочка. Частицы, поверхность которых покрывается оболочкой, подают в реакционную камеру посредством вихревого плазменного потока, материал оболочки вводят в виде термически нестабильного металлокомплекса вместе с вихревым потоком стабилизирующего газа, насыщенного его парами, частота вращения которого больше, чем у плазменного потока.

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами.

Изобретение относится к металлургии, к области производства сферических порошков из металлов и сплавов, предназначенных для дальнейшей переработки методами аддитивных технологий или горячего изостатического прессования в готовые изделия.

Изобретение относится к получению соединений с углеродом и может быть использовано в водородной энергетике. Устройство для получения порошка, содержащего карбид молибдена, содержит камеру 1 из диэлектрического материала с крышкой 2 вверху, внутри которой горизонтально и соосно размещены цилиндрические графитовые анод 9 и катод 5.

Изобретение относится к способу, включающему: размол порошка, содержащего железо сплава в присутствии оксида иттрия, до тех пор, пока оксид по существу не растворится в сплаве; термомеханическое уплотнение порошка с образованием уплотненного компонента; отжиг уплотненного компонента с образованием отожженного компонента и охлаждение отожженного компонента путем закалки водой с образованием обработанного компонента, где обработанный компонент включает поверхность, содержащую наноструктурированный ферритный сплав, этот наноструктурированный ферритный сплав включает наноструктуры, размещенные в содержащей железо основе сплава; при этом наноструктуры содержат частицы сложных оксидов, и частицы сложных оксидов содержат иттрий и титан; при этом на поверхности основа содержит примерно от 5 массовых процентов до 30 массовых процентов хрома и примерно от 0,1 массового процента до 10 массовых процентов молибдена; концентрация хи-фазы или сигма-фазы в наноструктурированном ферритном сплаве на поверхности составляет менее примерно 5 объемных процентов, и где стадию отжига проводят при температуре выше температуры растворения хи-фазы и сигма-фазы.
Наверх