Трехкоординатный индукционный магнитометр с самокалибровкой

Изобретение относится к области измерительной техники, а именно к устройствам для измерения переменных магнитных полей, в частности к устройствам для высокоточного измерения пространственных компонент вектора индукции магнитного поля с помощью индукционных датчиков. Трехкоординатный индукционный магнитометр с самокалибровкой состоит из шести идентичных индукционных датчиков со стержневыми ферритовыми сердечниками, причем датчики попарно соединены последовательно и расположены вдоль трех взаимно перпендикулярных осей с центральной геометрической симметрией, центр которой совпадает с магнитным центром магнитометра. Дополнительно введена внутренняя трехкомпонентная мера магнитной индукции, состоящая из диэлектрического куба, центр которого совмещен с центром магнитометра, а ребра куба параллельны его осям, с нанесенными на каждую грань куба вокруг оси индукционного датчика катушками индуктивности, по меньшей мере, с одним витком. Технический результат: повышение точности, стабильности и надежности работы трехкоординатного индукционного магнитометра. 1 ил.

 

Изобретение относится к области измерительной техники, а именно к устройствам для измерения переменных магнитных полей, в частности к устройствам для высокоточного измерения пространственных компонент вектора индукции магнитного поля с помощью индукционных датчиков.

Известен трехкоординатный магнитометр, в задачи которых входят юстировка взаимной перпендикулярности осей датчика и определения дрейфа нуль-пункта (патент RU №2229727, от 27.11.2002). Известны патенты, когда в трехкоординатном магнитометре задачи устранения помех решаются в процессе его калибровки (RU 2497139, от 18.05.2012). Так, например, в патенте RU №2290657 от 09.08.2005 г., калибровка осуществляется с помощью эталонной меры магнитного момента (магнитного диполя).

Наиболее близким по технической сущности является трехкоординатный магнитометр, калибровка которого осуществляется с помощью трехкомпонентной меры магнитной индукции (патент RU №2229727, от 27. 11.2002 г.).

Недостатком известных трехкоординатных магнитометров является постепенное снижение точности, стабильности и надежности работы, так как калибровка осуществляется перед началом эксплуатации датчика или проводится с некоторой периодичностью в процессе эксплуатации. В этом случае непосредственно во время эксплуатации возможно воздействия различных внешних факторов на сам датчик, которые могут существенно изменить его характеристики. Наиболее подверженным внешним влияниям является магнитная проницаемость ферромагнитного сердечника катушки индуктивности, которая существенным образом зависит от воздействия внешнего постоянного магнитного поля, наличия вблизи датчика ферромагнитных предметов, от температуры внешней среды.

Техническим результатом предлагаемого устройства является повышение точности, стабильности и надежности работы трехкоординатного индукционного магнитометра за счет постоянной самокалибровки индукционных датчиков магнитометра непосредственно в процессе его эксплуатации.

Технический результат достигается тем, что в отличие от известного устройства, содержащего трехкоординатный индукционный магнитометр, состоящий из шести идентичных индукционных датчиков со стержневыми ферритовыми сердечниками, причем датчики попарно соединены последовательно и расположены вдоль трех взаимно перпендикулярных осей с центральной геометрической симметрией, центр которой совпадает с магнитным центром магнитометра, дополнительно введена внутренняя трехкомпонентная мера магнитной индукции, состоящая из диэлектрического куба, центр которого совмещен с центром магнитометра, а ребра куба параллельны его осям, с нанесенными на каждую грань куба вокруг оси индукционного датчика катушки индуктивности, по меньшей мере, с одним витком.

Сущность изобретения заключается в том, что для самокалибровки магнитометра дополнительно в центре него установлен диэлектрик, выполненный в виде куба, а ребра куба параллельны осям магнитометра, на каждой грани куба вокруг оси индукционного датчика нанесена катушка индуктивности, по меньшей мере, с одним витком. Куб служит для фиксации катушки индуктивности, а материал из диэлектрика выбран для исключения влияния на магнитное поле. Катушки индуктивности служат для формирования собственного калибровочного магнитного поля.

Диэлектрический куб с нанесенными катушками индуктивности образуют меру магнитной индукции с известными параметрами и может использоваться для калибровки трехкоординатного магнитометра.

Поясним возможность калибровки. Диаметр однослойной катушки и ее расположение на диэлектрическом материале относительно ферромагнитного сердечника индукционного датчика таковы, что влиянием параметров сердечника на индуктивность меры магнитной индукции можно пренебречь. В этом случае магнитное поле, создаваемое каждой одновитковой катушкой индуктивности в центре витка, будет равно

где R - радиус витка, μ0=4π⋅-7 Гн/м - магнитная постоянная, Im - амплитуда переменного калибровочного тока [Иродов И.Е. Основные законы электромагнетизма. М.: Высш. шк., 1991, стр. 139]. Например, при радиусе витка R=5⋅10-3 м и силе тока Im=10-4 А с частотой 103 Гц амплитуда индукции Bm калибровочного магнитного поля будет равна 125,7⋅10-9 Тл, что уверенно может быть измерено индукционным датчиком. Например, при чувствительности датчика 10-11 Тл [Голев КМ. Трехкоординатный индукционный датчик переменного магнитного поля для магнитометрических систем навигации // И.М. Голев, Т.Н. Заенцева, Е.А. Никитина и др. Воздушно-космические силы. Теория и практика. №12, 2019, С. 91-100], точность оценки коэффициента преобразования индукционным датчиком может быть не менее 0,1%.

Структура предлагаемого устройства приведена на фигуре, где введены обозначения: 1 - индукционный датчик; 2 - стержневой ферритовый сердечник; XYZ - трехкоординатная система; 3 - диэлектрический куб; 4 -плоская катушка индуктивности.

Индукционные датчики 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 каждой оси намотаны на соответствующие ферритовые сердечники 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, соединены последовательно и жестко зафиксированы с центральным диэлектрическим кубом 3. На все грани куба 3 нанесены плоские катушки индуктивности 4 (на фигуре представлены катушки 4.1, 4.2 и 3.3. Катушки 4.4, 4.5 и 4.6 не представлены, так как не видны). Куб 3 с плоскими катушками 4 представляет собой внутреннюю трехкомпонентную меру магнитной индукции.

Работа магнитометра аналогична работе прототипа с некоторым отличием, связанным с калибровкой индукционных датчиков магнитометра непосредственно в процессе его эксплуатации.

Перед применением устройства проводится его калибровка с помощью внешней меры магнитной индукции или с помощью магнитного диполя.

После этой калибровки проводится калибровка с помощью внутренней трехкомпонентной меры магнитной индукции. Для этого последовательно все шесть катушек индуктивности 4 создают внутреннее эталонное переменное магнитное поле с помощью калибровочного тока, протекающего через соответствующие катушки 4. При этом производится измерение величины амплитуды этих магнитных полей трехкоординатным индукционным магнитометром. Например, поле плоской катушки 4.1 измеряется датчиком 1.1, катушки 4.2 - датчиком 1.3 и так далее. Эти измеренные значения запоминаются и считаются исходными, имея в виду, что на данный момент трехкоординатный индукционный магнитометр был уже откалиброван с помощью внешней трехкомпонентной меры магнитной индукции.

В процессе эксплуатации трехкоординатного индукционного магнитометра периодически проводится его самокалибровка. Для этого результаты периодических измерений калибровочного магнитного поля, создаваемого внутренней мерой индукции, сравниваются с исходными и при необходимости производится корректировка коэффициента преобразования каждого из шести индукционных датчиков, например, путем учета при дальнейших математических вычислениях.

Этим достигается указанный в изобретении технический результат.

Если обнаруживается существенное изменение параметров индукционного датчика, то тогда делается вывод о невозможности его эксплуатации.

Куб должен быть выполнен из диэлектрического немагнитного материала с низким температурным коэффициентом линейного расширения и с высокими механическими свойствами, например из ситалла. В настоящее время технологически достижимы точность линейных размеров ±0,03 мм, точность углов ±3 угловых секунды [https://oltech.ru/catalog/prizmy-i-kubiki/]. Индукционный датчик трехкоординатного индукционного магнитометра выполнен в виде катушки индуктивности.

Таким образом, предлагаемое устройство обеспечивает повышение точности, стабильности и надежности работы трехкоординатного индукционного магнитометра за счет постоянной самокалибровки индукционных датчиков магнитометра непосредственно в процессе его эксплуатации.

Трехкоординатный индукционный магнитометр с самокалибровкой, состоящий из шести идентичных индукционных датчиков со стержневыми ферритовыми сердечниками, причем датчики попарно соединены последовательно и расположены вдоль трех взаимно перпендикулярных осей с центральной геометрической симметрией, центр которой совпадает с магнитным центром магнитометра, отличающийся тем, что дополнительно введена внутренняя трехкомпонентная мера магнитной индукции, состоящая из диэлектрического куба, центр которого совмещен с центром магнитометра, а ребра куба параллельны его осям, с нанесенными на каждую грань куба вокруг оси индукционного датчика катушками индуктивности, по меньшей мере, с одним витком.



 

Похожие патенты:

Изобретение относится к области производства магнитометров. Реализация способа обеспечивается использованием в составе рабочего места (РМ) электронной части магнитометров (ЭЧМ), изготовленных по единой документации.

Изобретение относится к области производства магнитометров. Реализация способа обеспечивается использованием в составе рабочего места (РМ) электронной части магнитометров (ЭЧМ), изготовленных по единой документации.

Группа изобретений относится к магнитоизмерительной технике и навигационному приборостроению. Особенностью навигационного магнитометра является дистанционное управление процессом формирования компенсационных поправок, осуществляемое по двухпроводной линии передачи, подключаемой к входам компенсатора помех.

Группа изобретений относится к магнитоизмерительной технике и навигационному приборостроению. Особенностью навигационного магнитометра является дистанционное управление процессом формирования компенсационных поправок, осуществляемое по двухпроводной линии передачи, подключаемой к входам компенсатора помех.

Изобретение относится к области высокочувствительных магнитных микродатчиков. Сущность изобретения заключается в том, что два магнитных провода используются для одной катушки индуктивности и импульсный ток прикладывается к ним в противоположных направлениях, индуцированное катушкой индуктивности напряжение при детектировании нарастающих импульсов становится равным нулю, импульсный ток, прикладываемый к магнитному проводу, обладающему полем магнитной анизотропии 20 Гс или менее, а также имеющему двухфазную магнитную доменную структуру из поверхностного магнитного домена с циркулярной ориентацией спинов и из магнитного домена центральной жилы с продольной ориентацией спинов, имеет частоту импульса от 0,2 до 4,0 ГГц и силу, необходимую для создания циркулярного магнитного поля, в более чем 1,5 раза превышающего поле анизотропии, на поверхности провода.

Изобретение относится к области магнитных измерений и может быть использовано для тестирования магнитной силы полюсных элементов различных магнитных аппаратов и приборов. Устройство для тестирования магнитной силы полюсных элементов магнитных аппаратов и приборов, включая магнитные сепараторы, состоит из шарообразного феррозонда, принудительно отрываемого от поверхности полюсного элемента, измерителя силы отрыва, связанного с шарообразным феррозондом посредством хвостовика, при этом хвостовик выполнен растяжимым упругим, а между измерителем силы отрыва и шарообразным феррозондом установлен гаситель скорости шарообразного феррозонда после его отрыва от поверхности полюсного элемента.

Группа изобретений относится к области определения дипольного магнитного момента остаточной намагниченности и тензора магнитной поляризуемости слабо намагниченного объекта. Стенд для реализации способа определения дипольного магнитного момента остаточной намагниченности и тензора магнитной поляризуемости объекта содержит основание, платформу, измерительную систему и магнитометры, при этом объект зафиксирован на платформе, установленной на основании и расположенной в центре измерительной системы, образующей сферический объем радиуса R, а магнитометры установлены в измерительных точках поверхности сферического объема, при этом стенд для реализации способа содержит по меньшей мере один магнитометр, а основание выполнено в виде каркаса, на котором установлена платформа с помощью осей, на которых также установлена измерительная система, выполненная в виде рамы с расположенными на ней обоймами для крепления магнитометра, причем магнитный центр магнитометра при установке на раму совпадает с соответствующей измерительной точкой на поверхности сферического объема.

Группа изобретений относится к области определения дипольного магнитного момента остаточной намагниченности и тензора магнитной поляризуемости слабо намагниченного объекта. Стенд для реализации способа определения дипольного магнитного момента остаточной намагниченности и тензора магнитной поляризуемости объекта содержит основание, платформу, измерительную систему и магнитометры, при этом объект зафиксирован на платформе, установленной на основании и расположенной в центре измерительной системы, образующей сферический объем радиуса R, а магнитометры установлены в измерительных точках поверхности сферического объема, при этом стенд для реализации способа содержит по меньшей мере один магнитометр, а основание выполнено в виде каркаса, на котором установлена платформа с помощью осей, на которых также установлена измерительная система, выполненная в виде рамы с расположенными на ней обоймами для крепления магнитометра, причем магнитный центр магнитометра при установке на раму совпадает с соответствующей измерительной точкой на поверхности сферического объема.

Изобретение относится к измерительной технике, а именно предназначено для измерения величин и направлений слабых магнитных полей в широком диапазоне частот, и может применяться в магнитометрии. Магнитометр на тонкой магнитной пленке содержит печатную плату с расположенным на ней СВЧ-генератором, нагрузкой которого являются СВЧ-резонаторы, тонкую магнитную пленку, амплитудные детекторы, подключенные к СВЧ-резонаторам, операционные усилители, магнитную систему, формирующую постоянное магнитное поле, при этом тонкая магнитная пленка находится снаружи СВЧ-резонаторов, но в непосредственной близости над их индуктивными частями, которые выполнены в виде полосковых проводников на печатной плате, постоянное магнитное поле направлено вдоль оси трудного намагничивания тонкой магнитной пленки, а высокочастотное магнитное поле направлено под углом к оси легкого намагничивания, при этом направление максимальной чувствительности совпадает с направлением оси легкого намагничивания.

Изобретение относится к области автоматики и магнитометрии. Магниторезистивный датчик магнитного поля, содержащий мостовую измерительную схему из магниторезисторов, сформированных на диэлектрической подложке из пленки магнитомягкого ферромагнитного металла с нанесенными на резисторы низкорезистивными шунтами из немагнитного металла, ориентированными под углом 45 градусов к длине полоски, катушку Off/Set из пленки проводящего материала, при этом с целью расширения диапазона контролируемых полей и упрощения технологии изготовления катушка нанесена с обратной стороны подложки по отношению к магниторезисторам, сформированная магниторезистивная структура покрыта компаундом, нанесенным в магнитном поле, а в качестве материала магниторезисторов используется сплав с отрицательным коэффициентом магнитострикции.

Изобретение относится к области геофизики и может быть использовано для мониторинга положения магнитных полюсов Земли, навигации по магнитному полю, валидации моделей магнитного поля Земли, для баллистического и топогеодезического обеспечения. Для определения положения магнитного полюса Земли используется измерение характеристик магнитного поля Земли в регионе с магнитным полюсом Земли и решение обратной задачи минимизации невязок измерений и модельных характеристик магнитного поля с различным положением магнитного полюса. Для уточнения полученных оценок могут использоваться маршрутные съемки через зону магнитного полюса Земли, данные наблюдений магнитных обсерваторий и спутников. Технический результат – повышение достоверности и оперативности мониторинга положения магнитных полюсов Земли и навигации по магнитному полю Земли. 2 з.п. ф-лы, 5 ил., 1 табл.
Наверх