Способ изготовления силицида титана


H01L21/28052 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2751983:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) (RU)

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицида титана с пониженным значением контактного сопротивления. Способ изготовления полупроводниковых приборов включает процессы формирования активных областей полевого транзистора и электроды к ним, подзатворого диэлектрика и силицида титана, при этом согласно изобретению на подложках кремния р-типа проводимости с ориентацией (100), с удельным сопротивлением 10 Ом*см формируют силицид титана путем осаждения пленки титана Тi толщиной 75 нм при давлении 3*10-6Па, температуре подложки 60°С, со скоростью роста 1 нм/с и последующей обработкой структур ионами Si с энергией 85 кэВ дозой 1*1015-1*1016 см-2, с низкотемпературным отжигом при температуре 650°С в течение 30 с в атмосфере азота N2 и с проведением высокотемпературного отжига при температуре 1050°С в течение 20 с в атмосфере азота N2. Изобретение обеспечивает снижение контактного сопротивления, увеличение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицида титана с пониженным значением контактного сопротивления.

Известен способ изготовления силицида [Пат.5326724 США, МКИ H01L 21/293] покрытого слоем окисла, путем формирования топологических рисунков на основе многослойных структур, включающих слой титана Тi или TiSi и окисла. Между слоями металла и окисла располагают слой нитрида титана TiN толщиной 80-100 нм, который наносят реактивным распылением, добавляя N2 в реактор, после того как толщина слоя TiN дает возможность упростить техпроцесс формирования топологического рисунка.

В таких приборах из-за не технологичности формирование окисла затвора образуется большое количество дефектов, которые ухудшают электрические параметры приборов.

Известен способ изготовления слоев силицида [Пат.5043300 США, МКИ H01L 21/283] на пластине кремния. Способ включает технологию плазменной очистки пластин кремния, напыление в вакууме слоя титана в атмосфере, не содержащий кислорода, отжиг в среде азота N2 при температуре 500-695°С в течение 20-6°С с формированием слоев силицида титана и нитрида, последующий повторный отжиг при температуре 800-900°С с образованием стабильной фазы силицида титана.

Недостатками этого способа являются: высокие значения контактного сопротивления; высокая дефектность; низкая технологичность.

Задача, решаемая изобретением: снижение контактного сопротивления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается формированием силицида титана TiSi2. путем осаждения пленки титана Тi толщиной 75 нм при давлении 3*10-6Па, при температуре подложки 60°С, со скоростью роста 1 нм/с и последующей обработкой структур ионами Si с энергией 85 кэВ, дозой 1*1015 -1*1016 см-2, низкотемпературного отжига при температуре 650°С в течение 3°С, в атмосфере азота N2 и проведением высокотемпературного отжига при температуре 1050°С в течение 2°С, в атмосфере азота N2.

Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с ориентацией (100), удельным сопротивлением 10 Ом*см после осаждения пленки титана Тi толщиной 75 нм при давлении

3*10-6Па, температуре подложки 60°С, со скоростью роста 1 нм/с, проводили имплантацию ионов Si с энергией 85 кэВ, дозой 1*1015-1*1016 см-2, низкотемпературный отжиг при температуре 650°С в течение 3°С, в атмосфере азота N2, и затем высокотемпературный отжиг при температуре 1050°С в течение 2°С, в атмосфере азота N2. Активные области п- канального полевого транзистора и электроды к ним формировали по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Предложенный способ изготовления силицида титана TiSi2. путем осаждения пленки титана Тi толщиной 75 нм при давлении 3*10-6Па, температуре подложки 60°С, со скоростью роста 1 нм/с и последующей обработкой структур ионами Si с энергией 85 кэВ, дозой 1*1015-1*1016 см-2, низкотемпературного отжига при температуре 650°С в течение 3°С, в атмосфере азота N2 и проведением высокотемпературного отжига при температуре 1050°С в течение 2°С, в атмосфере азота N2., позволяет повысить процент выхода годных приборов и улучшит их надежность.

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 13,9%.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Таблица

Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии
плотность дефектов, см-2 контактное сопротивление, Ом/ם плотность дефектов, см-2 контактное сопротивление, Ом/ם
1 9,1 6,7 2,3 0,6
2 8,4 7,5 2,2 0,7
3 8,1 7,8 2,5 0,8
4 7,7 8,3 2,4 0,9
5 7,4 8,5 2,1 0,95
6 8,6 6,7 2,15 0,6
7 8,2 8,4 2,4 0,8
8 9,7 7,7 2,6 0,7
9 9,5 7,5 2,3 0,65
10 7,9 7,6 2,1 0,8
11 8,3 7,1 2,7 0,6
12 7,1 7,7 2,9 0,7
13 8,4 6,8 1,8 0,6

Технический результат: снижение контактного сопротивления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Способ изготовления полупроводниковых приборов, включающий процессы формирования активных областей полевого транзистора и электродов к ним, подзатворного диэлектрика и силицида титана, отличающийся тем, что на подложках кремния р-типа проводимости с ориентацией (100), с удельным сопротивлением 10 Ом*см формируют силицид титана путем осаждения пленки титана Ti толщиной 75 нм при давлении 3*10-6 Па, при температуре подложки 60°С со скоростью роста 1 нм/с и последующей обработки структур ионами Si с энергией 85 кэВ дозой 1*1015-1*1016 см-2 с низкотемпературным отжигом при температуре 650°С в течение 30 с в атмосфере азота N2 и с проведением высокотемпературного отжига при температуре 1050°С в течение 20 с в атмосфере азота N2.



 

Похожие патенты:
Способ формирования пленки оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 380°С, давлении 133 Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 850°С в течение 10 мин позволяет повысить процент выхода годных приборов и улучшить их надёжность..

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением. Сущность: на пластинах GaAs после создания активных областей полупроводникового прибора формировали контакты Pd/Ni/Ge последовательным нанесением в вакууме при давлении 10-5 Па слоя германия (Ge) толщиной 20 нм со скоростью осаждения 3 нм/с, слоя никеля (Ni) толщиной 15 нм со скоростью осаждения 1 нм/с, слоя палладия (Pd) толщиной 50 нм со скоростью осаждения 0,5 нм/с при температуре подложки 100°С с последующей термообработкой при температуре 450°С в форминг-газе в течение 2 мин.
Использование: для создания силицида никеля. Сущность изобретения заключается в том, что способ изготовления силицида никеля содержит осаждение пленки никеля Ni толщиной 30-50 нм в вакууме 3*10-6Па со скоростью роста 2 нм/с и последующей обработкой структур ионами ксенона Хе при температуре 175°С с энергией 300 кэВ, дозой 1*1015 см-2 и отжигом при температуре 240°С в течение 20 мин в атмосфере.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактно-барьерной металлизации прибора. Технология способа состоит в следующем: на кремниевую подложку р-типа проводимости, ориентации (100), удельным сопротивлением 10 Ом*см с изолирующим слоем оксида кремния толщиной 0,35 мкм формируют последовательным нанесением пленки Со толщиной 25 нм методом термического испарения в вакууме 2*10-3 Па со скоростью осаждения 1 нм/с с последующим двухступенчатым отжигом: в начале при температуре 450°С в течение 30 мин в среде водорода, с образованием CoSi2, затем при температуре 910°С в течение 10 мин в среде аргона Ar.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением. Целью изобретения является снижение контактного сопротивления, обеспечение технологичности, улучшение параметров работы приборов, повышение качества и увеличение процента выхода годных.

Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия, работающих в режиме обогащения. На поверхность полупроводниковой пластины с эпитаксиальной гетероструктрурой типа p-GaN/AlGaN/GaN плазмохимическими методами производится осаждение тонкой пленки диэлектрика на основе нитрида кремния толщиной от 1 до 50 нм.

Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия (GaN), работающих в режиме обогащения. В способе увеличения порогового напряжения отпирания GaN транзистора, включающем создание на поверхности кремниевой пластины с эпитаксиальной гетероструктурой типа p-GaN/AlGaN/GaN подзатворной р-GaN меза-области, межприборной меза-изоляции, формирование омических контактов к областям стока и истока транзистора, формирование двухслойной резистивной маски литографическими методами, очистку поверхности полупроводника, осаждение тонких пленок затворной металлизации, извлечение пластины из вакуумной камеры установки напыления, удаление резистивной маски, перед напылением тонких пленок затворной металлизации пластину подвергают обработке в атмосфере атомарного водорода в течение t=10-60 секунд при температуре Т=20-150°С и плотности потока атомов водорода на поверхность пластины, равной 1013-1016 ат.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования силицидных слоев с низким сопротивлением. Изобретение обеспечивает снижение сопротивления, повышение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных.

Изобретение относится к технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов с пониженным сопротивлением. В способе изготовления полупроводникового прибора формируют контакты на основе силицида платины.

Изобретение относится к технологии изготовления многоуровневой металлизации интегральных схем. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с повышенным коэффициентом усиления. Способ изготовления полупроводникового прибора включает формирование на кремниевой подложке эпитаксиального слоя, областей коллектора, базы и эмиттера, при этом область эмиттера формируют ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергией импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С.
Наверх