Способ формирования оксинитрида кремния

Способ формирования пленки оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 380°С, давлении 133 Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 850°С в течение 10 мин позволяет повысить процент выхода годных приборов и улучшить их надёжность.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления оксинитрида кремния с пониженным значением тока утечки.

Известен способ изготовления полупроводникового прибора [Патент на изобретение США 5362686, МКИ H01L 21/02] с защитным изолирующим слоем оксинитрида кремния на полупроводниковой подложке после выполнения разводки межсоединения, используя метод осаждения из паровой фазы силана и азотосодержащего газа.

В таких приборах из-за не технологичности формирования оксинитрида кремния образуется большое количество дефектов, которые ухудшают электрические параметры приборов.

Известен способ изготовления полупроводникового прибора [Патент США 5369297, МКИ H01L 29/78] путем создания окисла кремния и азотированного оксидного слоя в качестве ползатворного диэлектрика. В полевых транзисторах с целью расширения диапазона рабочих токов участок подзатворного слоя диоксида кремния, ближайший к стоку, подвергается азотированию.

Недостатками этого способа являются - высокие значения токов утечек, высокая дефектность, низкая технологичность.

Задача, решаемая изобретением - снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается формированием пленки оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 3800С, давлении 133Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 8500С в течение 10мин.

Технология способа состоит в следующем: на кремниевой подложке формируют активные области полевого транзистора стандартным способом. Затем формируют пленку оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 3800С, давлении 133Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 8500С в течение 10мин.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Таблица

Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии
плотность дефектов, см-2 токи утечки,
1012,А,
плотность дефектов, см-2 токи утечки,
1012,А,
1 17 15,1 3,7 2,3
2 19 17.3 3,8 2,7
3 16 17,7 3,4 2,1
4 18 18,4 3,5 2,4
5 20,4 18,5 4,1 2,8
6 16 15,5 3,3 2,3
7 20,2 18,4 4,4 2,7
8 17 17,1 3,8 2,6
9 18,5 16,5 3,7 2,2
10 17,6 17,6 3,4 2,9
11 20,3 17,2 4,2 2,4
12 21,4 16,3 3,9 2,5
13 19,5 16,1 3,7 2,3

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 21,9%.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ формирования пленки оксинитрида кремния толщиной 50нм на подложке кремния при температуре 3800С, давлении 133Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 8500С в течение 10мин, позволяет, повысить процент выхода годных приборов, и улучшит их надёжность.

Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Способ формирования полевого транзистора, включающий формирование активных областей полевого транзистора на кремниевой подложке, отличающийся тем, что после формирования активных областей полевого транзистора на кремниевой подложке формируют пленку оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 380°С, давлении 133 Па, при потоке SiH4 - 390 см3/мин, N2O - 1300 см3/мин и NH3 - 1200 см3/мин с последующей термообработкой при температуре 850°С в течение 10 мин.



 

Похожие патенты:

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием мощных нитрид-галлиевых полевых транзисторов.

Изобретение относится к электронной технике и предназначено для создания мощных полевых транзисторов с затвором Шоттки и дополнительным активным полевым («Field plate» - FP) электродом.

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием полевых HEMT транзисторов.

Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия (GaN), работающих в режиме обогащения.

Изобретение относится к технологии изготовления полевых транзисторов. Способ изготовления СВЧ мощного полевого псевдоморфного транзистора на гетероэпитаксиальной структуре AlGaAs/InGaAs/GaAs заключается в том, что формируют субмикронный Т-затвор с применением оптической литографии.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными токами утечки.

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием полевых транзисторов.

Изобретение относится к области полупроводниковой техники. Способ изготовления мощного СВЧ-транзистора включает нанесение на фланец слоя припоя, формирование пьедестала, нанесение подслоя, обеспечивающего крепление кристалла транзистора к пьедесталу, формирование на базовой подложке из монокристаллического кремния p-типа проводимости, ориентированного по плоскости (111), вспомогательных эпитаксиальных слоев, нанесение базового слоя и буферного слоя для выращивания эпитаксиальной структуры полупроводникового прибора на основе широкозонных III-нитридов, нанесение на базовый слой теплопроводящего CVD поликристаллического алмаза, удаление базовой подложки вместе со вспомогательными эпитаксиальными слоями до базового слоя, наращивание на базовом слое гетероэпитаксиальной структуры на основе широкозонных III-нитридов и формирование истока, затвора и стока.

Изобретение относится к технологии полупроводниковых устройств. В способе формирования электронного устройства удаляют фоторезист с по меньшей мере одной поверхности проводящего слоя с использованием смеси реактивов, которая содержит первый материал самоорганизующегося монослоя и реактив для удаления фоторезиста, таким образом осаждают самоорганизующийся монослой на по меньшей мере одну поверхность указанного проводящего слоя и осаждают полупроводниковый материал на самоорганизующийся монослой, нанесенный на проводящий слой, без озонной очистки проводящего слоя.

Изобретение относится к области полупроводниковой техники. Полупроводниковый прибор включает утоненную подложку из монокристаллического кремния р-типа проводимости, ориентированного по плоскости (111), с выполненным на ней буферным слоем из AlN, поверх которого выполнена теплопроводящая подложка в виде осажденного слоя поликристаллического алмаза толщиной, равной по меньшей мере 0,1 мм, на другой стороне подложки выполнена эпитаксиальная структура полупроводникового прибора на основе широкозонных III-нитридов, исток из AlGaN, затвор, сток из AlGaN, омические контакты к истоку и стоку, припой в виде слоя, включающего AuSn, медный пьедестал и фланец.

Изобретение относится к области микроэлектроники и может быть использовано при изготовлении транзисторов на пластине кремний на изоляторе (КНИ) с широкой областью применения.
Наверх