Способ одновременного получения деминерализованного дентина и минерально-органического компонента из зубов


A01N1/00 - Консервирование тел людей или животных, или растений или их частей; биоциды, например дезинфектанты, пестициды, гербициды (препараты для медицинских,стоматологических или гигиенических целей A61K; способы или устройства для дезинфекции или стерилизации вообще, или для дезодорации воздуха A61L); репелленты или аттрактанты (приманки A01M 31/06; лекарственные препараты A61K); регуляторы роста растений (соединения вообще C01,C07,C08; удобрения C05; вещества, улучшающие или стабилизирующие состояние почвы C09K 17/00)

Владельцы патента RU 2752035:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к медицине, а именно к изготовлению биоматериалов для регенеративной медицины, и раскрывает способ одновременного получения деминерализованного дентина и минерально-органического компонента из зубов. Способ характеризуется тем, что здоровые зубы, удаленные по ортодонтическим показаниям, или донорские кадаверные зубы человека или животных обрабатывают, убирают эмаль, цемент, обнажают околопульпарный дентин, подвергают материал низкочастотной ультразвуковой обработке. Перед деминерализацией проводят контроль состояния поверхностей материала. Деминерализуют материал в растворе соляной кислоты. Полученный после деминерализации биоматериала солевой раствор используют для получения минерально-органического компонента: фильтруют, нейтрализуют, образующийся после нейтрализации осадок отделяют центрифугированием, трехкратно промывают, полученный материал замораживают, лиофилизируют, расфасовывают и стерилизуют радиационным способом, а деминерализованный дентин промывают, замораживают, лиофилизируют, упаковывают и стерилизуют радиационным способом. Способ может быть использован в стоматологии, челюстно-лицевой хирургии, регенеративной хирургии опорных тканей. 4 пр.

 

Изобретение относится к медицине, биотехнологиям, а именно - к изготовлению биоматериалов для регенеративной медицины - одновременному получению деминерализованного дентина и минерально-органического компонента из зубов человека и животных.

Известен способ изготовления костно-протезного материала, в котором получают предшественники трикальцийфосфатных (TCP) частиц; проводят их многоэтапное спекание при различных температурных режимах с получением ансамблей TCP-частиц диаметром в заданном диапазоне от 5 до 400 мкм [1]. Недостатком способа является интенсивная термическая обработка материала с потерей или резким снижением в процессе производства его остеоиндуктивных и остеокондуктивных свойств, связанных с нарушением его структуры.

Известен способ получения биоматериала на основе подложки из фосфата кальция, пропитанного раствором, по меньшей мере, одного коагулянта, представляющего собой производное кальция.[2]. Недостатком способа является отсутствие в материале органического матрикса и коллагеновых структур, влияющих на его регенеративные свойства.

Известен способ получения минерально-органического компонента костной ткани, заключающийся в том, что в качестве сырья используют солевой раствор, являющийся отходом производства костных трансплантатов, который фильтруют через бумажный фильтр, нейтрализуют, доводя его рН до 7,2-7,4; образующийся после нейтрализации осадок отделяют центрифугированием, промывают дистиллированной водой, после чего снова центрифугируют и промывают водой и фосфатным буфером с рН 7,4±0,5 в течение 30 минут. После трехкратного промывания водой полученный материал замораживают при температуре - 50°С, лиофилизируют и разделяют на две фракции в соотношении 1:1; одну из фракций перемалывают на шаровой мельнице; обе фракции равномерно перемешивают, расфасовывают и стерилизуют материал радиационным способом [3].

Недостатком технологии является то, что она не предполагает использования в качестве материалов зубов; забора их как у живых людей (животных), так и кадаверов. Технология не предполагает получения одновременно и деминерализованного дентина и минерально-органического компонента; отсутствуют первичная стерилизация будущих материалов с помощью ультразвука, промежуточные этапы контроля материала и эффективности деминерализации с помощью оптического метода.

Целью изобретения является разработка способа одновременного получения деминерализованного дентина и минерально-органического компонента из зубов.

Эта цель достигается тем, что здоровые зубы, удаленные по ортодонтическим показаниям или донорские кадаверные зубы человека или животных обрабатывают 3% раствором гипохлорита натрия, 3% перекисью водорода; убирают эмаль, цемент, обнажают околопульпарный дентин с помощью алмазного бора с водяным охлаждением; подвергают материал низкочастотной ультразвуковой обработке с частотой 24-40 кГц; перед деминерализацией проводят контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния, определяя отношение интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, которое имеет значение от 8 до 20, и отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, которое имеет значение от 2,5 до 5; деминерализуют материал в 2,4Н-4,8Н растворе соляной кислоты; после деминерализации оценивают ее эффективность, исследуя поверхности материала с помощью спектроскопии комбинационного рассеяния, определяя отношение интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, которое принимает значение от 0,5 до 2, и отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, которое принимает значение от 0,5 до 1,5; далее солевой раствор используют для получения минерально-органического компонента, а деминерализованный дентин промывают в апирогенной воде, замораживают при температуре -60°С, лиофилизируют, расфасовывают, упаковывают и стерилизуют радиационным способом.

Предлагаемый способ предполагает использование в качестве материалов зубов. Это могут быть здоровые зубы человека и животных, в том числе удаленные по ортодонтическим показаниям. Данный материал достаточно распространен и может быть использован для заготовки биоматериалов. Кадаверный материал также может быть забран у трупов-доноров или у животных после их забоя, например, в процессе экспериментального исследования.

Способ предполагает получения одновременно и деминерализованного дентина и минерально-органического компонента. При этом низкочастотная ультразвуковая обработка с частотой 24-40 кГц позволяет выполнить первичную стерилизацию будущих биоматериалов. Этапный контроль эффективности деминерализации материала с помощью оптического метода исследования позволяет судить о возможности продолжения дальнейшего эффективного производства минерально-органического компонента из солевого раствора и деминерализованного дентина. Спектральная оценка поверхностей дентина до и после деминерализации стандартизирует характеристики получаемого продукта.

Предлагаемый способ одновременного безотходного получения деминерализованного дентинного материала и минерально-органического компонента дентина значительно оптимизирует производственный цикл, снижает время, расход сырья и трудозатраты, позволяя получить продукты, обладающие оптимальными остеоиндуктивными и остеокондуктивными свойствами для успешной регенерации костной ткани.

Способ реализуется следующим образом. В качестве сырья используют здоровые зубы, удаленные по ортодонтическим показаниям или донорские кадаверные зубы человека или животных. Материал обрабатывают 3% раствором гипохлорита натрия, 3% перекисью водорода. Убирают эмаль, цемент, обнажают околопульпарный дентин с помощью алмазного бора с водяным охлаждением. Первично стерилизуют материал, осуществляя его низкочастотную ультразвуковую обработку с частотой 24-40 кГц.

Перед деминерализацией проводят контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния, определяя отношение интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, которое имеет значение от 8 до 20, и отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, которое имеет значение от 2,5 до 5.

Деминерализуют материал в 2,4Н-4,8Н растворе соляной кислоты. После деминерализации оценивают ее эффективность, исследуя поверхности материала с помощью спектроскопии комбинационного рассеяния, определяя отношение интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, которое принимает значение от 0,5 до 2, и отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, которое принимает значение от 0,5 до 1,5.

Солевой раствор, полученный после деминерализации дентина фильтруют через бумажный фильтр, нейтрализуют, доводя его рН до 7,2-7,4. Образующийся после нейтрализации осадок отделяют центрифугированием, промывают дистиллированной водой, после чего снова центрифугируют и промывают водой и фосфатным буфером с рН 7,4±0,5 в течение 30 минут. После трехкратного промывания водой полученный материал замораживают при температуре - 50°С, лиофилизируют, расфасовывают и вторично стерилизуют радиационным способом.

Деминерализованный дентин промывают в апирогенной воде, замораживают при температуре -60°С, лиофилизируют, расфасовывают, упаковывают и вторично стерилизуют радиационным способом.

Способ иллюстрируется клиническими примерами.

Пример 1. Пациент М, 29 лет обратился в клинику с жалобами на «прикусывание» слизистой оболочки полости рта, образование язв в области зуба мудрости 1.8. Диагноз: дистопированный зуб мудрости (код по МКБ-10 - К07.3), принято решение об его удалении. Пациенту была проведена медикаментозная обработка полости рта и места инъекции анестезии и удаления. Интраоперационно полученный утильный материал - дистопированный здоровый зуб мудрости был соответствующим образом транспортирован на производство костных биоимплантатов. По предложенному способу он был использован для изготовления деминерализованного дентина и минерально-органического компонента костной ткани. При этом первичную стерилизацию материала осуществляли его низкочастотной ультразвуковой обработкой с частотой 24 кГц.

Перед деминерализацией контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния выявил значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, равное 20, а отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, равное 5. Деминерализацию выполняли в 2,4Н растворе соляной кислоты.

После деминерализации значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1 составило 0,5, и значение отношения интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1 было равно 0,5. Это свидетельствовало об эффективности обработки и деминерализации дентина и получении соответствующего солевого раствора. Далее по разработанному способу были получены деминерализованный дентин и минерально-органический компонент костной ткани из солевого раствора.

Пример 2. У трупа скоропостижно скончавшегося здорового мужчины, 29 лет, в рамках забора тканей и органов для трансплантации выполнен забор первых и вторых моляров. По предложенному способу они были использованы для изготовления деминерализованного дентина и минерально-органического компонента костной ткани. При этом первичную стерилизацию материала осуществляли его низкочастотной ультразвуковой обработкой с частотой 40 кГц.

Перед деминерализацией контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния выявил значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, равное 8, а отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, равное 2,5. Деминерализацию выполняли в 4,8Н растворе соляной кислоты.

После деминерализации значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1 составило 2, и значение отношения интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1 было равно 1,5. Это свидетельствовало об эффективности обработки и деминерализации дентина и получении соответствующего солевого раствора. Далее по разработанному способу были получены деминерализованный дентин и минерально-органический компонент из солевого раствора.

Пример 3. При доклиническом экспериментальном исследовании на свиньях выполнено удаление у живых животных под наркозом малых коренных зубов. По предложенному способу они были использованы для изготовления деминерализованного дентина и минерально-органического компонента костной ткани. При этом первичную стерилизацию материала осуществляли его низкочастотной ультразвуковой обработкой с частотой 24 кГц. Перед деминерализацией контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния выявил значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, равное 20, а отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, равное 5. Деминерализацию выполняли в 2,4Н растворе соляной кислоты.

После деминерализации значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1 составило 0,5, и значение отношения интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1 было равно 0,5. Это свидетельствовало об эффективности обработки и деминерализации дентина и получении соответствующего солевого раствора. Далее по разработанному способу были получены деминерализованный дентин и минерально-органический компонент костной ткани из солевого раствора.

Пример 4. При доклиническом экспериментальном исследовании на свиньях после выполнения гинекологических операций животных выводили из эксперимента на сроках 2,4 и 6 недель после операции. После забоя у животных были забраны малые коренные зубы. По предложенному способу они были использованы для изготовления деминерализованного дентина и минерально-органического компонента костной ткани. При этом первичную стерилизацию материала осуществляли его низкочастотной ультразвуковой обработкой с частотой 40 кГц.

Перед деминерализацией контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния выявил значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, равное 8, а отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, равное 2,5. Деминерализацию выполняли в 4,8Н растворе соляной кислоты.

После деминерализации значение отношения интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1 составило 2, и значение отношения интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1 было равно 1,5. Это свидетельствовало об эффективности обработки и деминерализации дентина и получении соответствующего солевого раствора. Далее по разработанному способу были получены деминерализованный дентин и минерально-органический компонент из солевого раствора.

Предлагаемый способ может быть использован в стоматологии, челюстно-лицевой хирургии, регенеративной хирургии опорных тканей.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент РФ 2010154147/15, 06.05.2009. Костно-протезный материал и способ его изготовления // Патент России №2457000. 2012. / Такамаса С., Рюити М.

2. Патент РФ 2011102372/15, 22.06.2009. Биоматериалы на основе фосфата кальция // Патент России №2 501 571. 2013. / Балаге Т., Роше Н., Карль Ж.

3. Патент РФ на изобретение №2704114 от 24.10.2019 / Способ получения минерально-органического компонента костной ткани // Волова Л.Т., Писарева Е.В., Власов М.Ю., Долгушкин Д.А., Максименко Н.А.

Способ одновременного получения деминерализованного дентина и минерально-органического компонента из зубов, заключающийся в том, что полученный после деминерализации биоматериала солевой раствор фильтруют через бумажный фильтр, нейтрализуют, доводя его рН до 7,2-7,4; образующийся после нейтрализации осадок отделяют центрифугированием, промывают дистиллированной водой, после чего снова центрифугируют и промывают водой и фосфатным буфером с рН 7,4±0,5 в течение 30 минут; после трехкратного промывания водой полученный материал замораживают при температуре -50°С, лиофилизируют, расфасовывают и стерилизуют радиационным способом; отличающийся тем, что здоровые зубы, удаленные по ортодонтическим показаниям, или донорские кадаверные зубы человека или животных обрабатывают 3% раствором гипохлорита натрия, 3% перекисью водорода; убирают эмаль, цемент, обнажают околопульпарный дентин с помощью алмазного бора с водяным охлаждением; подвергают материал низкочастотной ультразвуковой обработке с частотой 24-40 кГц; перед деминерализацией проводят контроль состояния поверхностей материала с помощью спектроскопии комбинационного рассеяния, определяя отношение интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, которое имеет значение от 8 до 20, и отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, которое имеет значение от 2,5 до 5; деминерализуют материал в 2,4Н-4,8Н растворе соляной кислоты; после деминерализации оценивают ее эффективность, исследуя поверхности материала с помощью спектроскопии комбинационного рассеяния, определяя отношение интенсивности линии фосфат-иона 960 см-1 к интенсивности линии Амида I 1660 см-1, которое принимает значение от 0,5 до 2, и отношение интенсивности линии карбонат-иона 1070 см-1 к интенсивности линии Амида I 1660 см-1, которое принимает значение от 0,5 до 1,5; далее солевой раствор используют для получения минерально-органического компонента, а деминерализованный дентин промывают в апирогенной воде, замораживают при температуре -60°С, лиофилизируют, расфасовывают, упаковывают и стерилизуют радиационным способом.



 

Похожие патенты:

Изобретение относится к медицине. Удобная вкладка содержит удерживающую структуру, имеющую размер, подходящий для ее размещения под веками и вдоль по меньшей мере части конъюнктивального мешка верхнего и нижнего век глаза.

Изобретение может быть использовано при получении конструкционных деталей, в медицинской технике, в микротехнике, для получения вспененных предметов. Композиционный порошок содержит микроструктурированные частицы, содержащие карбонат кальция, причем крупные частицы объединены с мелкими частицами.

Изобретение относится к медицине. Биоматериал на основе гидроксиапатита, содержащий фторид кальция и диоксид циркония, причем в качестве гидроксиапатита он содержит гидроксиапатит, полученный путем химического осаждения из водных растворов.

Изобретение относится к области медицины, а именно к травматологии и ортопедии. Предложен способ получения биоактивного покрытия c бактерицидными свойствами на имплантате из титана, включающий обезжиривание и последующее активирование поверхности имплантата из титана.

Изобретение относится к области медицины и медицинской технологии и представляет собой имплантат костной ткани, отличающийся тем, что имплантат, или по меньшей мере часть имплантата, состоит из жада - плотного, прочного, способного к остеоинтеграции минерального агрегата со спутанно-волокнистой или тонкокристаллической структурой, выбранного из следующей группы силикатных минеральных агрегатов и горных пород: жадеитовый жад, нефритовый жад, ксонотлитовый жад, везувианитовый жад, бовенитовый жад, гидрогроссуляровый жад.

Изобретение относится к медицине, а именно к способу напыления биосовместимого покрытия. Способ напыления биосовместимого покрытия, модифицированного компонентом с низкой температурой разложения, включающий послойное нанесение электроплазменным напылением на титановую основу покрытия, состоящего из слоя титана и слоя гидроксиапатита (ГА), модифицированного бемитом, причём электроплазменное напыление слоя из гидроксиапатита, модифицированного бемитом, производят с дистанции напыления 50-60 мм в течение 6-8 с и токе дуги 320 А.

Изобретение относится к области медицины, а именно к кальцийфосфатному цементу для заполнения костных дефектов. Кальцийфосфатный цемент для заполнения костных дефектов, состоящий из порошка, содержащего трикальцийфосфат, гидроксиапатит и цементной жидкости, содержащей фосфат магния, фосфорную кислоту, карбонат калия и воду, при определенном соотношении компонентов.

Изобретение относится к медицине и раскрывает биоактивный композиционный материал для замещения костных дефектов, а также способ получения такого материала. Композиционный материал обладает повышенной биосовместимостью с костной тканью, обеспечивает более качественную замену дефектов сложной формы, что достигается путем изготовления указанного материала в виде цементной жидкости, содержащей воду, фосфат магния, оксид магния, оксид цинка и дигидрофосфат натрия, и реакционно-твердеющего порошка, содержащего гидроксиапатит, трикальцийфосфат и брушит, при соответствующем соотношении компонентов.

Изобретение относится к медицине и биотехнологии. Описан способ получения композиционного материала для замещения костных дефектов, включающий: подготовку порошковой смеси, содержащей порошок альфа-Ca3(PO4)2; подготовку пасты при добавлении жидкости затворения в виде водного раствора, содержащего карбонат-ионы; формование образцов или изделий из пасты; гидролитическую обработку образцов или изделий в водном растворе, содержащем карбонат-ион, и сушку.
Изобретение относится к медицине, а именно к материалу для замещения дефектов костной ткани, содержащему препарат “Деринат” в количестве 8-12 мас.%, гидроксиапатит в количестве 15-25% и гипс - остальное. Изобретение обеспечивает создание материала для замещения костных дефектов, не вызывающего реакции остеолизиса.

Изобретение относится к области биотехнологии, конкретно к способу культивирования популяции T-клеток, содержащих химерный антигенный рецептор (CAR), и может быть использовано в медицине. Заявленный способ, включающий приведение популяции Т-клеток в контакт с комбинацией цитокинов, включающей IL-15 и по меньшей мере один цитокин, выбранный из IL-2, IL-7, IL-12, IL-18 и IL-21, позволяет получать популяцию T-клеток, содержащих CAR, эффективно применяемую в иммунотерапии рака.
Наверх