Многоканальная волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии

Использование: для детектирования и измерения параметров сигналов акустической эмиссии посредством волоконно-оптической системы. Сущность изобретения заключается в том, что волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии содержит два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2. Технический результат: обеспечение возможности упрощения конструкции волоконно-оптической системы детектирования и измерения параметров сигналов акустической эмиссии и обеспечение возможности создания системы регистрации, малочувствительной к дрейфу длины резонатора. 2 ил.

 

Изобретение относится к области волоконно-оптических измерительных систем, используемых для диагностики внутреннего состояния различных конструкций и детектирования внешних ударных воздействий. В системе используется двойное преобразование внешнего воздействия: первичный сенсор осуществляет акустооптическое преобразование (преобразует акустическое колебание в объекте в изменение свойств оптического излучения), далее в блоке-регистраторе осуществляется вторичное преобразование свойств оптического излучения в электрический сигнал. Физически в схеме используется интерференционная методика измерения колебаний фазы оптической волны одновременно в двух спектральных каналах.

Известны различные конструкции датчиков акустической эмиссии (АЭ) и систем на их основе. Наиболее распространены системы, построенные на базе пьезоэлектрических преобразователей АЭ. (RU 2012126743 A, RU 96102359 А). Во всех таких конструкциях сигнал АЭ преобразуется в колебания элемента из пьезокерамики. Возникающее в результате пьезоэлектрического эффекта напряжение на электродах элементы, считывается системой регистрации.

Недостатком пьезоэлектрических преобразователей является необходимость использования металлических проводов для передачи сигнала, что резко снижает помехозащищенность конструкции, особенно в условиях сложной электромагнитной обстановки. Кроме того, пьезоэлектрические ПАЭ обладают сильно неравномерной АЧХ с ярко выраженными резонансами, что затрудняет спектральный анализ широкополосных сигналов.

Существуют распределенные оптические сенсоры акустической эмиссии US 2010315630 (А1). В таких конструкциях используется зависимость рэлеевского либо рамановского рассеяния от внешних воздействий на волокно. Их недостатком является сложность и дороговизна аппаратуры, а также сложность количественного анализа сигналов.

Наиболее близкими с точки зрения конструкции и технической сущности датчиков и системы обработки являются модели US 5832157 А и ЕР 3669146 (А1), взятые за прототип. В обоих случаях датчиков имеет вид интерферометра Фабри-Перо. В первом варианте резонатор формируется в воздушном зазоре между двумя торцами оптического волокна. Вся конструкция собирается в капилляре. Недостатком такой схемы является низкий оптический контраст такого резонатора и сложность его изготовления.

Во втором случае в качестве датчика АЭ используются две волоконные брэгговские решетки, также формирующие резонатор Фабри-Перо. Недостатком данного варианта является частотная зависимость коэффициента отражения зеркал от температуры ВОД.

В качестве системы обработки в обоих случаях предложено применять либо качающийся по длине волны лазер, либо спектрометр, либо внешнюю линию задержки. Недостатком данных схем являются сложность их реализации и ограничение в быстродействие. Характерные частоты сканирования спектрометра или длины волны лазера не превышают единиц килогерц.

По сравнению с прототипом новое устройство имеет ряд преимуществ:

- простота конструкции;

- источники света работают в стационарном режиме без модуляции;

- большой динамический диапазон;

- калибровка датчиков непосредственно в устройстве;

- нерезонансный характер АЧХ системы ВОД + схема обработки.

Задача изобретения состоит в реализации технического решения, позволяющего упростить конструкцию волоконно-оптической системы детектирования и измерения параметров сигналов акустической эмиссии и создать систему регистрации, малочувствительную к дрейфу длины резонатора.

Поставленная задача решается тем, что волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии содержит два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2.

Изобретение иллюстрируется чертежом, на фиг. 1 которого приведена когерентная схема с квадратурным каналом, а на фиг. 2 представлена зависимость чувствительности датчика при изменении длины резонатора.

Два лазерных диода 1 подключены к мультиплексору DWDM 2. Выход мультиплексора 2 подключен к оптоволоконному делителю 1×N3. Каждый выход делителя 3 подключен к первому порту оптического циркулятора 4, а ко второму порту циркулятора 4 подключен волоконно-оптический датчик акустической эмиссии (ВОД АЭ) 5, представляющий собой двухлучевой интерферометр с необходимой разностью длин плеч.

Разность длин плеч интерферометра подбирается таким образом, чтобы удовлетворялось условие квадратуры с нужной точностью. Выход циркулятора 4 подключен к DWDM демультиплексору 6, а выходы демультиплексора 6 соединены со входами двух оптоволоконных фотоприемников 7. Рабочие длины волн лазерных диодов 1 выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM.

Свет от двух лазерных диодов 1 и 2, сдвинутых по длине волны на один либо несколько периодов стандартной сетки частот DWDM, с помощью мультиплексора DWDM 2 объединяется в одно оптическое волокно. Далее, с помощью оптоволоконного делителя 1×N 3 свет делится на нужное число каналов. Свет, отраженный от ВОД АЭ 5, поступает на DWDM демультиплексор 6 и разводится на два фотоприемника 7, по одному на каждый спектральный канал.

Опишем принцип действия двухволновой системы для регистрации малых акустических импульсов. Коэффициент отражения от любого двухлучевого интерферометра имеет следующую зависимость:

где k=2π/λ, где λ - длина волны, n - показатель преломления, d - длина резонатора.

Пусть имеется два источника с небольшим сдвигом длины волны. Каждый фотоприемник принимает сигнал на своей длине волны. Тогда напряжения на выходах фотоприемников, которые пропорциональны отраженной от резонатора мощности света, будут иметь вид:

Отметим, что в данном случае приведены выражения для нормированных значений напряжения, что всегда можно реализовать на практике предварительной калибровкой каналов.

Пусть d=d0+Δd, где d0 - текущая длина резонатора, Δd - малые колебания длины резонатора, вызванные прохождением акустической волны, причем Δd<<d0. Тогда выражение (2) можно переписать как:

где Δλ - сдвиг по длине волны между каналами.

Учитывая малость сдвига длины волны и малость колебаний резонатора, вызванных сигналами АЭ, выражение для сигналов можно, путем несложных преобразований, привести к виду:

В выражении (4) видно, что сигналы на фотоприемниках отличаются слагаемым под косинусом, которое не зависит от Δd. В результате всегда можно подобрать такую Δλ, чтобы выполнялось условие:

В этом случае (4) примет вид:

Используя то, что Δd<<d0, выражение (6), раскладывая синус и косинус, можно преобразовать:

Отсюда

В реальных условиях требование (5) выполняется с конечной точностью, причем дрейф длины резонатора приводит к колебаниям значения Δϕ. Однако небольшие отклонения Δϕ от π/2 будут приводить к небольшим колебаниям чувствительности, что обеспечивает конечный рабочий диапазон такой схемы. На фиг. 2 приведена зависимость глубины модуляции (изменения чувствительности) γ при изменении d0.

Уменьшение чувствительности датчика вдвое происходит при изменении оптической длины резонатора примерно на 42 мкм, что соответствует относительной деформации (для датчика 7 мм)

Таким образом, предложенная методика должна позволить создать систему регистрации, малочувствительную к дрейфу длины резонатора.

В качестве ВОД АЭ может быть использован любой ВОД, представляющий собой двухлучевой интерферометр, либо

низкодобротный многолучевой. При этом для устойчивой работы системы необходимо производить отбор ВОД таким образом, чтобы ВОД, используемые на одном элементе конструкции и обрабатываемые одной системой, отличались друг от друга по разности длин плеч менее, чем на 10% от максимальной допустимой деформации.

Отбор датчиков может быть осуществлен с помощью той же измерительной системы за счет подачи небольшого возбуждения и проверки выполнения условия квадратуры по фазовому сдвигу регистрируемых колебаний в спектральных каналах.

Волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии, содержащая два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2.



 

Похожие патенты:

Использование: для неразрушающего акустико-эмиссионного контроля. Сущность изобретения заключается в том, что устройство акустико-эмиссионного датчика со встроенным акустическим генератором, содержит акустический приемник; акустический генератор, расположенный рядом с акустическим приемником; корпус, акустический генератор и акустический приемник, расположенные в корпусе; закрепляющий состав в корпусе, чтобы по меньшей мере частично герметизировать акустический генератор и акустический приемник; и износостойкую пластину, находящуюся в акустической связи с акустическим приемником и с акустическим генератором, при этом износостойкая пластина выполнена с возможностью передачи акустической энергии во время испытания от акустического генератора к акустическому приемнику через конструкцию, с которой соединена износостойкая пластина, и при этом износостойкая пластина содержит первую акустическую изоляцию, чтобы препятствовать передаче акустической энергии от акустического генератора к акустическому приемнику через износостойкую пластину, причем акустический генератор содержит вторую акустическую изоляцию, чтобы препятствовать передаче акустической энергии от акустического генератора в закрепляющий состав внутри корпуса.

Использование: для оценки износостойкости тонкослойных керамических покрытий с применением метода акустической эмиссии. Сущность изобретения заключается в том, что осуществляют трение между стальным контртелом и испытываемым тонкослойным керамическим покрытием, отличие заключается в том, что при помощи индентора на покрытии формируют две дорожки трения - экспериментально оцениваемая и калибровочная, при формировании дорожек трения фиксируют акустическую эмиссию, вычисляют коэффициент пропорциональности, соответствующий данному конкретному материалу покрытия, вычисляют массу изношенного материала экспериментальной дорожки трения, ее среднюю глубину и изношенный объем при отсутствии разрушения покрытия, определяют относительную износостойкость покрытия.

Использование: для контроля физико-механических свойств взрывачатых материалов (ВВ) по сигналам акустической эмиссии. Сущность изобретения заключается в том, что осуществляют подготовку испытуемых образцов из исследуемого материала, которые подвергают механическим воздействиям в сочетании с синхронным регистрированием показателей контролирующих приборов и построением соответствующих графиков зависимостей величин деформаций от величин воздействующих нагрузок и времени, при этом первоначально подвергают испытаниям подготовленные образцы из материала взрывчатых веществ (ВВ), аналогичного исследуемому заданного состава, на основе результатов испытаний которых формируют базу данных (БД) критических нагрузок, соответствующих полному разрушению образцов данного материала, затем производят комплексное нагружение исследуемых независимых групп образцов ВВ механическим воздействиям последовательно усилий растяжения на одни группы образцов и усилий сжатия на другие группы образцов, проводя нагружение в этих группах в возрастающем режиме до момента, соответствующего максимальному значению активности АЭ, составляющей величину не более 55% от критической нагрузки, определенной по БД критических нагрузок, параллельно с нагружением контрольных образцов снимают показания регистрирующих приборов и строят графики зависимости акустико-эмиссионных параметров от времени нагружения и диаграммы деформирования, на основе построенных упомянутых графиков определяют максимальные значения активности АЭ, момента времени, соответствующего этому значению, нагрузку и деформацию образца, на основе полученных данных определяют искомые механические показатели испытуемых образцов ВВ.
Использование: для прогнозирования критической неисправности движущегося узла по акустико-эмиссионным данным. Сущность изобретения заключается в том, что вблизи анализируемых узлов прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, полученные в ходе штатной работы узлов акустические сигналы от датчиков сохраняют и считают эталонными, улавливают акустические сигналы от датчиков при последующей работе движущихся узлов, сравнивают полученные на предыдущей стадии акустические сигналы с эталонными сигналами, по разнице вида акустических сигналов, сравненных на предыдущей стадии, делают вывод об отклонении функционирования движущихся узлов от эталонного, при этом по времени приема сходных акустических сигналов от датчиков определяют местонахождение предполагаемого дефекта в узле, а по характеру акустического сигнала определяют тип предполагаемого дефекта, анализируют изменение во времени разницы акустических сигналов от эталонного, получая скорость изменений, и вычисляют время наступления критической неисправности узла и ее тип, вычисленное время сообщают эксплуатирующему движущиеся узлы, осуществляя профилактику образования дефектов, данные предыдущих этапов используют для прогнозирования состояния данных или аналогичных движущихся узлов в будущем времени.
Использование: для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции; полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки либо выход за установленные рамки имеет высокое значение.
Использование: для мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов в конструкции; акустические сигналы от датчиков, полученные на первой стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии; активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии; критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии; закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии; полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы; данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени.
Использование: для непрерывного или периодического акустико-эмиссионного сбора данных в целях прогнозирования технического состояния объектов. Сущность изобретения заключается в том, что на поверхности и/или внутри объекта, либо в его полости, либо в среде, заполняющей полости, созданной естественно или искусственно, размещают по меньшей мере два датчика, улавливающих непрерывно или периодически сигналы акустической эмиссии, получаемые от динамических процессов в объекте; полученные в первой стадии сигналы от датчиков сохраняют; по разнице времени приема сходных сигналов от датчиков определяют локализацию процесса в объекте, а по характеру сигнала определяют тип процесса и полученные данные также сохраняют; сохраненные данные используют для построения стохастических или детерминированных функций, зависящих от времени и описывающих процессы в объекте с учетом места их локализации; на основе полученных на предыдущей стадии функций определяют тренды развития динамических процессов в объекте, тем самым прогнозируя его техническое состояние в заданный момент или интервал будущего времени.

Изобретение относится к области дефектоскопии и может быть использовано в качестве метода неразрушающего контроля при оценке технического состояния металлоконструкций объектов. Сущность: осуществляют нагружение испытуемого образца в два этапа нагрузкой до его максимальной деформации, с одновременной регистрацией сигналов акустической эмиссии прибором, на первом из которых осуществляют кратковременное обжатие троекратно до максимальной деформации, на втором осуществляют нагружение образца постоянной нагрузкой до максимальной деформации и выдерживают определенное время.
Использование: для акустического мониторинга ходовой части транспортного средства. Сущность изобретения заключается в том, что выполняют получение информации в виде акустического сигнала с ходовой части транспортного средства посредством установленных на ее элементах акустических датчиков, передающих получаемый акустический сигнал в вычислительный модуль, обработку сигнала, получение сведений о состоянии ходовой части, сравнение их с нормативными значениями, выдачу результата, получаемый акустический сигнал разделяют на группы по принципу локализации и относят каждую группу к соответствующему узлу ходовой части, далее обрабатывают сигналы каждой группы в отдельности по индивидуальному алгоритму, получают сведения о характеристиках звукового сигнала и его источнике, о состоянии узлов ходовой части, сравнивают с нормативными значениями для каждого узла, полученными ранее на исправном транспортном средстве, выводят результаты для каждого узла с возможностью вывода информации по каждому элементу узла, при этом в каждой группе сигналов, разделенной по принципу локализации, сигналы распределяют по мощности и частоте, причем сигналы с максимальными значениями мощности, а также сигналы с минимальными и максимальными значениями частоты относят к пороговым, которые затем сравнивают с нормативными значениями для каждого узла, в случаях выхода пороговых значений за диапазоны нормативных, считают, что элемент узла неисправен и выдают сигнал.

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла. В заявленном способе контроля прочности оптического волокна в контролируемом объекте создают напряжение и измеряют акустической сигнал, по результатам обработки которого выделяют сигнал акустической эмиссии и оценивают характеристики контролируемого объекта.

Использование: для контроля неисправностей в подшипниках роторного оборудования. Сущность изобретения заключается в том, что система эксплуатационного контроля неисправностей в подшипниках роторного оборудования, регистрирующая сигналы акустической эмиссии, полученные с датчиков, установленных на подшипниковый узел, содержит аналого-цифровой преобразователь для подключения к одному из датчиков акустической эмиссии через мультиплексор, периодически опрашивающий датчики акустической эмиссии, энергонезависимую память, а также микропроцессор и канал передачи данных для синхронизации с интегральной матрицей состояния оборудования, программно-сопряженные между собой и реализованные на программируемой логической интегральной схеме, причём микропроцессор формирует огибающую обнаруженного датчиком сигнала акустической эмиссии, выполняет частотное преобразование Хартли, разложение сигнала по Гильберту и регистрацию длительности, величины и количества пиков для выявления циклических закономерностей и определения размера и характеристик дефектов в подшипнике. Технический результат: повышение производительности контроля путём более быстрого и эффективного обнаружения сигналов акустической эмиссии роторного оборудования, в том числе при нестационарных режимах работы, а также расширение функциональных возможностей в части обнаружения акустических сигналов от частиц механических примесей и водной эмульсии, содержащихся в смазке подшипников вращения или скольжения. 2 н. и 4 з.п. ф-лы, 2 ил.
Наверх